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Preface

Electronic devices that permit signals of certain frequencies to pass while

suppressing others are called filters, and this handbook describes the design of
such devices.

The design of filters from fundamental principles is an extremely involved

process that requires an intimate knowledge of circuit theory and associated

mathematics; often, computer assistance is essential. Most scientists and engi-

neers have neither the time nor the inclination to become filter designers,
because the filter they need is simply a tool to achieve some end in their own

field of endeavor. In recent years there has been a trend towards simplifica-
tion and standardization of filter design and the purpose of this handbook is

to assist engineers and scientists by presenting a set of standardized designs

and procedures that can be applied to resistor-capacitor active filters or RC

active filters. (RC active f'flters and their advantages and disadvantages are

discussed in chapter 1.) Throughout the handbook, emphasis is placed on

simplified procedures that can be used by the reader who has a minimum of

knowledge about circuit design and little acquaintance with fdter theory.

This approach is stressed by the manner in which the handbook is organized.

The handbook has three main parts: The first part (chapter 2) is a review

of some information that is essential for work with filters; it is not intended

to be a comprehensive review of circuit or filter theory, but it includes certain

topics (usually considered elementary) that must be understood thoroughly

to avoid confusion when using the rest of the handbook. Readers who find

the first part too elementary may wish to proceed directly to the second part.

The second part (chapters 3 through 6) includes design information for

specific types of filter circuitry and describes simple procedures for obtaining
the component values for a filter that will have a desired set of characteristics.

All of the circuits have been built and tested, and pertinent information relat-

ing to their actual performance is given in this part. The mathematical know-

ledge required to obtain working designs from this part of the handbook

involves only arithmetic and elementary algebra.

The third part (appendix) is a review of certain topics in filter ttieory and

is intended to provide some basic understanding of how filters are designed.
The review of theory is placed at the end of the handbook to emphasize the

fact that a minimum of specialized knowledge is required to understand and

use the design information in the second part.

Many thanks are due Picky Cox for building and testing many of the

circuits in this handbook and to Carol Carothers for the difficult job of
typing much of the manuscript.
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CHAPTER 1.

Introduction

RC ACTIVE FILTERS

There are many ways in which filter circuits can be classified, for example,

filters that use inductors and those that do not. Figure l(a) shows a Falter

circuit consisting of an inductor L, a capacitor C, and a resistor R, but filters
of this type may be formed without a resistor. The circuit is called an LC

filter and is intended to pass a band of frequencies extending from dc to

some cutoff frequency re- The amplitude response of such a circuit is given
in figure l(b).

There are instances in which it is desirable to use a filter that does not

require inductors; falter circuits without inductors present many advantages.

The circuit for a low-pass filter that has an amplitude response identical to

the LC filter in figure l(a) is shown in figure l(c), and is seen to consist only

of resistors, capacitors, and an active element in the form of an amplifier.

The circuit is a characteristic example of anRC active Filter. An active filter

of this type includes more parts than a passive LC circuit and, in addition,

requires a power supply; accordingly, the RC active circuit must have definite

advantages if it is to take the place of an LC filter, but the most significant

advantages accrue from the absence of an inductor. For low-frequency cir-

cuits, especially below one hertz, inductors are large and expensive. Large
inductors also are not ideal because they have too much series resistance and

stray capacitance. Inductors of over a few microhenries cannot be integrated
either monolithically or in hybrid form; as a result, most LC filters cannot

be miniaturized or mass-produced by modern microelectronic techniques.
LC filters are troublesome even in discrete form because it is often difficult

to obtain nonstandard values of inductances. Moreover, fabrication of induc-

tors that have special values, or time-consuming selection of inductors that
must be connected in parallel or in series, is much more inconvenient that

the bridging of a number of capacitors to produce a given capacitance value.
Also it is easier to select special value capacitors than inductors.

In contrast to passive LC filters, RC active filters do not need to be

matched to a source or load impedance, but a low-impedance source often

must be used. Also, RC active filters can provide an impedance transforma-

tion; that is, they can have a high input impedance and a low output imped-
ance, which means that network stages are isolated and can be tuned inde-
pendently without interaction.
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RC ACTIVE FILTER DESIGN
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l(a) An LC low-pass filter
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l(b) Amplitude response of LC filter (gain vs. frequency).
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1 (c) An RC active low-pass filter.

FIGURE 1. - Two low-pass falters and their responses.
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INTRODUCTION 3

Many of the disadvantages of RC active filters stem from the use of active

elements, usually operational amplifiers. Amplifier outputs ordinarily have

offsets that range from a few microvolts to a few millivolts and have tempera-

ture coefficients of typically 1 to 100 microvolts per degree Celsius (#V/°C).

Also, amplifiers usually have input bias currents that may flow through input
circuit resistors and produce output voltage offsets; input bias currents also

are a function of temperature. Moreover, the limited frequency response of
operational amplifiers defines the high-frequency responses of RC active fil-

ters; ordinarily, the maximum bandwidth is usually about 100 kilohertz

(kHz), but a 1-megahertz (MHz) response can be achieved with simple designs
that have only a few stages and use fast operational amplifiers and low resist-

ance-element values. In practice, the limiting factor is the slewing rate of the

operational amplifier (see the section on Slewing Rate under Operational
Amplifiers in this chapter). A high slewing rate is necessary to prevent distor-

tion of the output waveform at high frequencies when the output voltage is a
few volts or more.

The advantages and disadvantages of an RC active filter, then, can be
summarized as follows:

Advantages-

• Require no inductors

• Can be made light and small

• Can be mass-produced by integrated-circuit technology
• Are practical at frequencies as low as a fraction of a hertz

• Do not require impedance matching
• Can provide high-to-low impedance transformation

• Can be designed to provide gain or zero insertion loss

• Have flexible power requirements; often, when the filter is part of
a circuit the same power supply can be used.

Disadvantages,

• Usually require more parts than passive LC filters
• Require a power supply

• Require active elements that limit the bandwidth and output swing
and often cause dc offsets in the output.

RC active filters are now in widespread use because their advantages far'

exceed their disadvantages in many applications. Many types of active filters
are available as off-the-shelf components from a number of commercial

sources, and one is advised to purchase filters whenever possible. However,

there are many instances when it is necessary to design and build an RC

active filter, and it is hoped this handbook will prove useful on such occa-
sions.
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CHAPTER2

Review of Fundamentals

TYPES OF FILTERS

The design of any filter involves an attempt to achieve some unattainable

ideal. For example, an ideal low-pass filter would have the amplitude response

shown in figure 2(a), and would pass all frequencies with uniform gain in the

pass region from dc to some cutoff frequency fc; above fc' in the stopband, all
frequencies would be infinitely attenuated and the attenuation rate (slope of

the curve at fc) would be infinite and would appear as a vertical straight line

at re"

Practical amplitude responses are not ideal; nevertheless, they are useful in

many applications. Practical filters approach the ideal response in different

ways; for example, some emphasize flatness in the passband, but do not have

a particularly steep attenuation slope; others have steep attenuation slopes,
but do not have fiat gain in the passband. Certain classes of filters are de-

signed to have linear phase response (important in minimizing overshoot or

ringing in pulse circuits) at the expense of flatness of gain and steepness of

attenuation. In general, a practical low-pass filter will approach the ideal by
emphasizing one or more of the basic filter characteristics of passband flat-

ness, attenuation slope, or phase linearity. Other factors, such as infinite

attenuation of a particular frequency or the degree of attenuation in some

given region of the stopband, are often important.

The various approximations to the ideal filter response are identified by

such names as Butterworth, Chebyshev, Bessel, and others. The response

curves of the common types are shown in figures 2(b) through 2(h).

Probably the most commonly used filter is the Butterworth, which has

the characteristic amplitude response shown in figure 2(b). Butterworth

filters have a maximally-fiat response in the passband; that is, passband
flatness is the ideal filter characteristic emphasized, but it is achieved at

the expense of phase linearity [see figure 2(h)] and of steepness of attenua-

tion slope. However, the attenuation slope of the Butterworth filter is quite
good and, for applications where phase linearity is not important, the Butter-

worth response is an excellent general purpose approximation to the ideal filter.

If steepness of attenuation slope, especially in the region of cutoff, is more

important than passband flatness or phase linearity, the Chebyshev response,

shown in figure 2(c) is often applicable ;however, there is ripplein the passband.

Chebyshev filters can be designed to provide different amounts of ripple, but

the amplitude of the ripple in the passband remains constant for any given
amount.
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2(b) Butterworth.
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Frequency

2(c) Chebyshev.

Zeroes of

transmission

Frequency

2(d) Inverse Chebyshev.

r-

Frequency

2(e) Complete Chebyshev, also called
a Cauer, an elliptic integral, or an

elliptic function response.

Bessel

Frequency

2(g) Bessel.

_ Butterworth

Frequency

2(t) Legendre or Optimum.

Butterworth

_Befc _\ ssel

Frequency

2(h) Bessel and Butterworth
phase shift.

FIGURE 2. - Types of low-pass filter response.
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REVIEW OF FUNDAMENTALS 7

Both the Butterworth and the Chebyshev low-pass filters achieve infinite

attenuation only at infinite frequency; that is, all the zeroes of transmission

occur at infinite frequency, but at any other frequency some signals will get

through, even in the stopband. If infinite attenuation at particular frequencies

in the stopband is required, the Inverse Chebyshev response shown in figure

2(d) may be used; there is no tipple in the passband, but ripple does exist in

the stopband and attenuation is infinite at certain frequencies.
A third filter in the Chebyshev family is the Complete Chebyshev; its

response is shown in figure 2(e). The Complete Chebyshev is also called a

Cauer, Elliptic-Integral, Elliptic-Function, or Zolatarev (but rarely Darling-

ton, even though S. Darlington did much of the original work). The Cheby-

shev [figure 2(c)] and Inverse Chebyshev [figure 2(d)] filters are special cases

of the more general class of Complete Chebyshevs. The Complete Chebyshev
filter has ripple in the passband and stopband as well as infinite attenuation

at certain finite frequencies.

As has been emphasized, a Butterworth filter has a maximally-fiat pass-

band response and the Chebyshev family of filters provides a good attenua-

tion slope. On some occasions the ripples of a Chebyshev filter are not toler-

able and the attenuation slope of a Butterworth filter is inadequate. Designing

a Chebyshev fdter that will have a very Small or zero ripple does not help

because Chebyshev and Butterworth filters are of the same family, and a
Chebyshev filter with zero ripple is a Butterworth filter. A solution in this

instance would be to use a Legendre or Optimum filter. The amplitude

response for such a filter is given in figure 2(f) and, for purposes of compari-
son, the response of a Butterworth filter also is shown. Notice that the

Legendre response is not as flat as that of the maximally-fiat Butterworth

response in the passband, but that the attenuation slope of the Legendre

response is steeper. A key property of a Legendre filter is monotonicity; that
is, for any value of gain there is a unique frequency. This is in contrast to

the Chebyshev family in which a particular value of gain will occur at several

frequencies because of ripple. Butterworth filters also are monotonic, but

Legendre filters have the steepest possible cutoff for a filter which is mono-
tonic.

Thus far filters have been discussed mainly in terms of their amplitude

responses, which are plots of gain (or attenuation) versus frequency. How-

ever, these plots do not describe the complete transmission properties of a
filter; for example, the phase characteristics of a network is one of the

most important parameters of response for a filter designed for pulse work.

When a rectangular pulse is passed through a Butterworth, Chebyshev, or

Legendre filter, overshoot or tinging will appear on the pulse at the output.

If this is undesirable, one of the members of the Gaussian family of filters

can be used, the most common of which is usually called a Bessel filter
since Bessel polynomials occur in the denominator of the transfer func-

tions. Bessel filters are sometimes called Thomson filters after the originator
of the design method.
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8 RC ACTIVE FILTER DESIGN

If ringing or overshoot must be avoided when pulses are filtered, the

phase shift between the intput and output of a filter must be a linear function

of frequency; stated differently, the rate of change of phase with respect to

frequency, or the group delay, must be constant. The net effect of a constant

group delay in a filter is that all frequencies are delayed by the same amount;
thus there is no dispersion of signals of different frequencies. Accordingly,

since a pulse contains signals of different frequencies, its shape will be re-

tained when filtered by a circuit that has a linear-phase response or constant

group delay. Just as the Butterworth filter is the best approximation to the

ideal of perfect flatness in a passband_ so the Bessel filter is the best approxi-

mation to the ideal of perfect flatness or constancy of group delay in the

passband because it has a maximally-flat group-delay response;however, this

only applies to low-pass filters because high-pass and bandpass Bessel filters

do not have the linear-phase property.

Figure 2(g) compares the amplitude response of a Bessel filter with a

Butterworth. Note that the Bessel is a poorer approximation to the ideal

both in flatness in the passband and in steepness of attenuation. Figure 2(h)

compares the phase for an ideal filter, a Butterworth, and a Bessel. For an

ideal filter, the group delay is constant at all frequencies and the phase shift

is linear with frequency. The Butterworth filter group delay is not constant,

and the plot of the phase angle versus frequency is nonlinear. In the passband

region, the Bessel Filter shows a reasonably linear phase-angle vs. frequency

curve that is a fairly good approximation to constant group delay.

The responses of various filters to a square-wave input are iUustrated by

the oscillograms reproduced in figure 3. These oscfllograms are obtained from

actual circuits. The ringing in the Butterworth and Chebyshev filters that is

the result of their nonlinear phase characteristics is evident, and the absence

of ringing in the Bessel filter shows how well this type of filter approximates

the desired linear-phase response; deafly, the response of the Chebyshev Filter
is inferior to the other two.

Transitional filters exist that have compromise characteristics that trade

off the best properties of two types of filters; perhaps the most common
is the Butterworth-Thomson Filter that has characteristics lying between
the maximally-flat amplitude of the Butterworth and the maximally-flat

group delay of the Thomson Filter (Bessel).

A summary of the main features of the types of filters discussed so far

is given in table I. The majority of filtering requirements can be met with

three types of filters for which design information is given in subsequent

chapters.

DECIBELS

Decibel is a logarithmic expression used in Filter applications as a unit of

gain or loss. Characteristic of logarithmic operations, processes involving

A--li--diA-db db db -d

ir 11 ll I_ gl HI

• IE aim I_i ,am i

F v v V '

l" lLr TT T T

11 I I [ fill I 1 !ll I [ [ [:



3(a) Butterworth.
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3(b) Chebyshev.

II E R M

3(c) Bessel.

FIGURE 3. - Responses of various four-pole, low-pass filters

to a square wave input.
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10 RC ACTIVE FILTER DESIGN
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TABLE I. - Comparison of Filter Types

l_ame of filter

type

Main distinguishing
characteristic

Remarks

Butterworth

Chebyshev

Inverse Chebyshev

Complete Chebyshev

(also called Cauer,

elliptic-function,

elliptic-integral, or

Zolatarev)

Legendre

Bessel (also called

Thomson)

Has maximally-flat amplitude

response

Amplitude response has equal

amplitude ripples in the pass-
band

Amplitude response has equal

amplitude ripples in the stop-
band

Amplitude response has equi-

ripple in both pass- and stop-
bands

Has no passband ripple, but

has steeper attenuation slope
than the Butterworth

Phase characteristic is nearly

linear in the pass region,

giving maximally-fiat group
delay

The most popular

general purpose filter

Attenuation slope is
steeper than Butter-
worth near cutoff

No passband ripple.
Has zeros of trans-

mission in the stop-
band

Has zeros of trans-

mission in the stop-
band

Is not maximally flat

Good for pulse
circuits because

ringing and overshoot
are minimized. Has

poor attenuation
slope

\
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REVIEW OF FUNDAMENTALS 11

multiplication or division are reduced to additions or subtractions, that in

many but not all cases is advantageous because the calculation is simpler.

Decibels have come to be used in a manner that is not strictly correct according
to the original definition; however, the massive use of the incorrect form

on manufacturers' data sheets, in books, and throughout the electronics

industry in general has virtually forced a redefinition of the term decibel.

The original definition of decibels is embodied in figure 4. The box rep-
resents an amplifier, Filter, or other device that may be passive or active.

Input power P1 across input impedance Z 1 results in an input voltage V 1
with a phase angle ¢1" Correspondingly, at the output there appears power

P2 in Z2 along with V 2 and phase angle _2" The ratio of output power to
input power of the circuit is:

Power Ratio -
P2 V22/(Z 2 COS_2)

P1 V2/(Z1 c°s _bl)
(1)

(ii--i II li-I

.-
The power ratio computed by equation (1) has no units. Decibels are now
defined as:

P2

dB = 10 lOgl0 _-1 (2)

The power gain or loss in dB is therefore found by taking the logarithm to
the base 10 of the expression in equation (1) and multiplying it by 10, which

gives

I irj <i

• Z 1 cos _1
V2 + 10 -- + 10 log10

dB = 10 lOgl0 V--_I log10 Z2 c°s_2
(3) f i t' V '•:i_- ,•__

If the impedances are resistive, the last term in equation (3) can be omitted

and if the impedances are equal, the last two terms can be dropped. The re-
maining term can be manipulated to become

V 2

dB = 20 loglo V--'_" (4)

I_-__-,I2 "I2" _'

I I I | I I II I I I II I I II 7l l If"
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12 RC ACTIVE FILTER DESIGN

| RI !_ II !1 B! 1

P1 _ V1 V2

o 1 I
(_1 (;'2

• I! II! II • !11 i !

_ _ v v _ V t

FIGURE 4. - Diagram illustrating the relationships in the
definition of a decibel.

| ! ! l E H 1 X II E E II il I

11 I lI _r_ l i'' I' I 1 1 lIlll I I



REVIEW OF FUNDAMENTALS 13

Note that equation (4) is an expression for the voltage gain or loss of the

circuit expressed in dB. Strictly speaking, it should be used only when the

input and output impedances are equal; for example, in a 600-ohm telephone

system; however, the expression for voltage gain in equation (4) currently is
used even when the impedances are not equal. For simplicity, and because it

is used extensively in reference literature, equation (4) is used to define

voltage gain in this handbook.

r_il-dt-ll did

r u Ill E l

EXAMPLE 1: An amplifier has a voltage gain of 2; express this in dB.

SOLUTION: From equation (4),

dB = 20 lOgl0 2/1 = (20)(0.3010) = 6.020

Accordingly, an amplifier with a gain of 2 is usually said to have a gain of

6dB.

r! t !1

EXAMPLE 2: A circuit attenuates an input voltage by a factor of 2;

express its gain in dB.

SOLUTION: From equation (4),

dB = 20 lOgl0 1/2 = -20 lOgl0 2/1 = -6.020

Note that for a gain or loss of 2, the numerical answer is the same, namely

6 dB, but the gain is indicated by a plus sign while a loss or attenuation is

indicated by a minus sign.

I El 'mE mi I

EXAMPLE 3: An amplifier has a 3-position gain switch to provide gains

of 10, 1.0, and 0.1 ; express these gains in dB.

SOLUTION:

Gain = 10

Gain = 1

Gain = 0.1

dB = 20 lOgl0 10 = 20 dB

dB =201og10 1 = 0dB

dB = 20 lOgl0 0.1 = -20 dB.
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14 RC ACTIVE FILTER DESIGN

EXAMPLE 4: Express voltage gain of 0.01,0.1, 1,10,100, 1000, 10,000,

100,000, 1,000,000 in dB.

SOLUTION: From equation (4),

Gain dB

0.01 --40

0.1 -20

1 0
10 20

100 40

1,000 60

10,000 80

100,000 100

1,000,000 120

The value of using decibels in all cases to describe gain is highly question-

able. For example, it is probably better to say that an amplifier has a gain of

100 than to state that its gain is 40 dB. Moreover, the use ofdB to simplify

cascaded-stage gain calculations can result in complication rather than sim-

plification. This is illustrated by the following example:

EXAMPLE 5: Three amplifiers with gains of 3, 4, and 5 are connected

in series. Express the overall gain as a number and in dB.

SOLUTION:

Gain =3 x4 x 5 = 60

Gain = 9.5424 + 12.0412 + 13.9794 = 35.563 dB

In the above example, it is obvious that computations have not been

simplified by adding dB's instead of multiplying gains, in fact, it is clear

that expressing performance in decibels does not enhance comprehension

of what the amplifier chain is doing in this case. Nevertheless, decibels will
be used extensively in this handbook because they are widely used in filter

design and because their use provides convenient graphs of filter performance.

GRAPHICAL PLOTS OF FILTER RESPONSES

The performance of ftlters can be depicted in a number of ways; for

example, by plotting frequency versus amplitude, phase angle, or group
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delay, and by the pole-zero plots that are discussed in the appendix. The most

common graphical representation is a plot of amplitude versus frequency (for

examples, see figure 5). A peculiarity of the scales used for attenuation and

frequency is worth noting: Although the units of attenuation are dB, a logarith-
mic quantity, the values are spaced linearly along the vertical axis; on the other

hand, frequency is not converted to a logarithmic equivalent before plotting,

but the graph paper is logarithmically divided along its horizontal axis, and

thus frequency is plotted logarithmically. Accordingly, a logarithmic quantity

is plotted linearly along the vertical axis and a linear quantity is plotted

logarithmically along the horizontal axis. Amplitude-versus-frequency curves
nearly always are plotted this way.

In the design of Filters, special emphasis is placed on the attenuation slope,
which is a measure of the steepness of the attenuation curve in the transition

between passband and stopband. The attenuation slope is usually expressed in

dB per octave or dB per decade. An octave, which is a term originating in

music, represents a factor of two in frequency; accordingly, 10 kHz is one

octave above 5 kHz, and 2.5 kHz is an octave below 5 kHz. A decade repre-

sents a factor of 10 in similar manner. The relationship between dB-per-

octave and dB-per-decade is systematic;for example:

6 dB per octave = 20 dB per decade

12 dB per octave = 40 dB per decade

18 dB per octave = 60 dB per decade

24 dB per octave = 80 dB per decade

30 dB per octave = 100 dB per decade

The relationship is simple because a decade on logarithmic graph paper is

3.3219 times as much distance as an octave so that, for a straight-line atten-

uation curve, 6 dB per octave (more accurately 6.0206 dB per octave) is
equal to (6.0206)(3.3219) = 20 dB per decade.

FREQUENCY AND IMPEDANCE SCALING

For purposes of standardization and simplification, a filter is initially

designed to provide some convenient cutoff frequency such as f = 1 Hz [or,

more usually, ¢o = 1 radian per second (rad/sec)] and to incorporate conven-

ient impedance levels such as one ohm or one farad, even though the Final

result might yield impractical component values. The filter is then redesigned

to the desired frequency and to practical impedance levels by frequency and
impedance scaling.

The simple low-pass Filter shown in figure 5(a) has a cutoff frequency
of ¢oc = 1/(RC) = 1 rad/sec. It is called a normalizedfllter because its cutoff

frequency is 1 rad/sec and because its component values are unity (ohm-farad).
The normalized amplitude response is shown in the figure.
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16 RC ACTIVE FILTER DESIGN
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5(a) Normalized filter with normalized response curve.
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5(b) Frequency-scaled filter with response curve.
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5(c) Impedance-scaled filter with response curve.
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FIGURE 5. - Frequency and impedance scaling.
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Suppose a filter is required that can be constructed from practical compo-

nents arid that has the same amplitude response curve shape as in figure 5(a),

but with a cutoff frequency of 1000 Hz. Since Wc is proportional to the

reciprocal of the RC product, the frequency can be increased by reducing R,

C, or both. The multiplying factor is the ratio of the normalized frequency
f = 6o/21r = 1/21r Hz, to the desired frequency of 1000 Hz. Note that fre-

quencies should be either in radians per second or, as chosen in this case,

cycles per second (Hz). Further, let it be decided to reduce R and leave C
at one farad. The new resistance will be

_ (Normalized frequency) (R) _ 1
R1 - (Desired frequency) (2it) (1000) ohm

Figure 5(b) shows the design of the filter at this stage. Three observations can

be made at this point: First, the filter has been adjusted to the correct cutoff

frequency of 1000 Hz. Second, the shape of the amplitude response curve has

not been changed by frequency scaling, so, theoretically, the design is com-

plete. Third, the design involves completely impractical component values of

R 1 = 0.000159 ohm and C1 = 1 farad. Fortunately, the frequency is propor-

tional to the reciprocal of the product of R 1 and C1 ;thus if one is increased

and the other decreased by the same amount, the frequency will remain
unchanged. Consequently, a more practical component selection can be

obtained by converting the initial C 1 value of 1 farad to 0.01 microfarad by

dividing by 108. To keep the cutoff frequency at 1000 Hz, R 1 must be
multiplied by 108 to give 15,900 ohms. The final circuit and its response

are shown in figure 5(c).

Note that the amplitude responses indicated in figures 5(b) and 5(c) are

identical in shape and cutoff frequency, which illustrates that impedance

scaling does not change the response curve in any way.

The procedures used to scale frequency and impedance are general and
can be applied to _lny RC active filter. The rules are summarized in table II.

EXAMPLE 6: The circuit shown in figure 6(a) is for a 4-pole, low-pass

filter with Butterworth response having a 3-dB cutoff frequency of 1000 Hz.
Redesign for a cutoff of 10 Hz.

SOLUTION: As indicated in table II, the frequency is scaled from 1000
Hz to 10 Hz by multiplying all resistors by 1000/10 =100; all resistors be-

come one megohm. The decision whether to impedance-scale or not depends

on practical considerations that are covered in a succeeding section on opera-
tional amplifiers. For the present, however, assume that it is desirable to

minimize offset as much as possible between the input and output of the fil-

ter. Low offset can be achieved in several ways; for example, the resistors chn

be left at one megohm and FET operational amplifiers can be used that have

i_il dt II II d
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18 RC ACTIVE FILTER DESIGN

A--A--I'I-A -A-A-d

f W II 1_ !! • ]

TABLE II. - Procedures for Scaling the Frequency and Impedance

ofan Active Filter

Frequency

scaling

Impedance

scaling

Given a filter that has a cutoff frequency off c, change

to a new cutoff frequency fn as follows:

Either multiply all resistor values by fc/f n

or multiply all capacitor values by fc/f n

Change to more practical impedance levels as follows:

Multiply all resistors by K and divide all

capacitors by K, where K is any suitable

constant that will bring the impedances
to the desired levels.

Note that K can be greater or less than

unity, so that R's can be increased and
C's decreased or vice versa as desired.

Note that the frequency is not altered

by impedance scaling.
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fdhA • Ad

r _ w Dr '

0.01723 pF

0.01470 pF___ If"

0.04159 pF

0.006091 pF_-

[_! ! ! !

6(a) Four-pole low-pass Butterworth filter with a 1000-Hz cutoff.

0,1723 pF 0.4159 #F

0.06091 pF_- _

6(b) Four-pole, low-pass Butterworth filter with frequency and impedance
scaled to 10 Hz.

i :!1_i II n 1

FIGURE 6. - Example 6 Butterworth filter circuits.
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20 kC ACTIVE FILTER DESIGN

sufficiently low input bias currents to produce low dc offset (in this instance,
there is no need to scale impedances). Another method for reduction of dc

offset applies when ordinary operational amplifiers (not FET) are used, when
it is necessary to balance out their relatively large bias currents by adding two

2-megohm resistors, one between the output of each amplifier and its invert-

ing input. It might be necessary to bypass the 2-megohm resistors to prevent
oscillation or to maintain amplifier open-loop gain at higher frequencies.

A third way of reducing the dc offset from input to output would be to

use smaller resistors and larger capacitors. For this purpose, choose K = 0.1

and multiply the 1-megohm resistor values by 0.1 and divide all capacitor

values by 0.1 as in table II (page 18); this gives a circuit with the values shown

in figure 6(b).

EXAMPLE 7 : The circuit given in figure 7(a) is for a bandpass filter hav-

ing a center frequency of 1000 Hz and a 3-dB bandwidth of 33.33 Hz as

shown in figure 7(b). Redesign by scaling for a 200-Hz center-frequency, and
find the new bandwidth.

SOLUTION: As noted in table II (page 18), the frequency is scaled by

multiplying all resistors by 1000/200 = 5. Thus, R 1 = 238.8 k_2, R 2 = 132.7

_2, and R 3 = 477.5 k_2; impedance scaling is not necessary since these values
are reasonable, as are each of the capacitor values (0.1 microfarad). The

redesigned circuit is shown in figure 7(c). Since the frequency scaling applies

to all frequencies, the new bandwidth is proportional and is 33.33/5 = 6.667

Hz, providing the response curve shown in figure 7(d).
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BANDWIDTH AND Q

Although Q may be defined in several ways, a general definition that

applies to any system is

27r (Peak energy storage)
Q -- (Energy dissipated per cycle) (5)

This is the fundamental definition of Q, and all other definitions are

derived from it. Equation (5) applies to any type of resonant system includ-

ing series-tuned and parallel-tuned circuits comprised of inductors and capaci-

tors, transmission lines, microwave cavities, acoustic organ pipes, mechanical

pendulums, and RC active circuits.
For an inductor or capacitor, Q turns out to be the ratio of the reactance

to the resistance. For an inductor, Q = coL/R and for a capacitor, Q = 1/coCR,

where R in both instances is an equivalent series resistance. Applied to in-

ductors and capacitors, Q is a measure of the quality of the component; in
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7(a) A 1000-Hz bandpass filter with
a bandwidth of 33.33 Hz.
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£

t.9 ,_3.33 Hz

I

1000

Frequency, Hz

7(b) The response curve for
the 1000-Hz filter.

r _ I !--'

238.8 kD.

R1

R2

7(c) A 200-Hz bandpass filter with
a bandwidth of 6.667 Hz.

c

0

-3

//_ .667 Hz

I

2O0

Frequency, Hz

7(d) The response curve for
the 200-Hz filter.
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FIGURE 7. - Example 7 bandpass filter circuits.
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22 RC ACTIVE FILTER DESIGN

fact, Q is an abbreviation for "quality factor." The higher the Q, the more

nearly does an inductor or capacitor approach the ideal component.
In a series-tuned circuit it is possible for the voltage across the inductor

to be considerably greater than the voltage applied to the circuit. In fact,
both the inductor and capacitor voltages will be nearly Q times the applied

voltage, where Q is the quality factor of the overall circuit. Similarly, in a

parallel-tuned circuit the circulating current will be nearly Q times the current

entering the circuit.
For RC active filter applications, Q is defined in a way that allows it to be

used for tuned circuits as a measure of the selectivity or sharpness of tuning.

The response curve for a tuned circuit is shown in figure 8, and the quality

factor, Q, may be obtained as follows:

"_ fo center frequency

Q fl-f2 3 dB-bandwidth (6)-

where -to is the center frequency of the tuned circuit, fl is the upper 3-dB

frequency, and f2 is the lower 3-dB frequency. Notice that since Q is a ratio
of two frequencies, it is a dimensionless quantity, so that Q = 6Oo/(Co1 - co2)
is also valid.

As explained below, fland f2 are often referred to as the half-power
points: Let the power in a circuit having resistance R be P. If the voltage

across the circuit is V,

V 2
p = _ (7)

R

If the power is halved, then

P=2 V22R= (___) 2 . _R1 (8)

Thus the power is halved when the voltage is divided by _ Expressing this

in dB,

A--A--A_A-A A Ail

| IW L_ U gg m ]

_ U

V V V _

It !

1

20 lOgl0 _ - 20 lOgl0 0.7071 = -3 dB
(9)

Accordingly, the half-power points occur at the frequency where the voltage

is 3 dB down from the peak. It can also be shown that fo is the geometric

mean off 1 and j"2, that is,

f2 = flf2 (10)
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FIGURE 8. - The Q of a resonant circuit shows a sharp rise in gain over

a narrow band centered at the resonant frequency fo"
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24 RC ACTIVE FILTER DESIGN

EXAMPLE 8: The circuit in figure 7(a) is for a bandpass _ter having a

center frequency of 1000 Hz and a 3-dB bandwidth of 33.33 Hz as shown

in figure 7(b). Find the circuit Q and the 3-dB frequencies.

SOLUTION: From equation (6),

Center frequency _ 1000 _ 30
Q = 3-dB bandwidth 33.33

From equation (10),

Also _"

fir2 = (1000) 2 = 106 (11)

fl-f2 = 33.33 Hz (12)

Combining equations (11) and (12), and solving the resulting quadratic equa-

tion, there is obtained

fl = 1016.80 Hz

f2 = 983.47 Hz

EXAMPLE 9: The circuit in figure 7(c) is for a bandpass filter having a

center frequency of 200 Hz and bandwidth of 6.667 Hz. Find the circuit Q.

SOLUTION: This simple problem can be solved in two ways. One way is

to use equation (7),

200
Q ='--= 30

6.667

The other way is to observe that circuit Q is not changed by frequency-scaling

or impedance-scaling. Since the circuit in figure 7(c) was scaled from a circuit

having a Q of 30 (see example 8), the new circuit also must have a Q of 30.
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OPERATIONAL AMPLI FI ERS

Introduction

Operational amplifiers play a key role in RC active _ters inasmuch as they
are the active elements. An operational amplifier is a high-gain amplifier that
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has a frequency response down to dc. In linear applications, operational
amplifiers are invariably used with feedback, usually negative; however,

RC active circuits may also involve a mixture of positive and negative feed-

back. Negative feedback in RC active circuits is usually used to achieve

some precise gain requirement as required by design calculations. Positive

feedback is often used to modify the frequency response curve to some

desired shape. Only the characteristics and limitations of operational ampli-

fiers as applied to RC active filters will be reviewed because the theory and

application of operational amplifiers are thoroughly discussed in books,
articles, and manufacturers' applications notes.

The term "operational amplifier" was coined in the late 1940's to denote

a type of amplifier used at that time in analog simulators as well as analog

computers for the solution of differential and integral equations. It is interest-
hag to note that in recent years developments have come full circle, because

work directed towards producing highly stable active filters has resulted in a

class of circuits called "infinite-gain, state-variable circuits," one of which is

shown in figure 63; these cireldtS are Composed of analog integrators, adders,

and subtracters and am a type of analog computer that can be analyzed
readily by standard analog-computer techniques. Initial design usually as-

sumes an ideal operational amplifier; fortunately, it is not necessary (and it
would be impossible) to take into account all the ways in which deviations of

actual amplifiers from the ideal will affect filter performance. The experi-

enced designer will consider the effect of various relevant amplifier imperfec-

tions and will account for them in the initial steps of design.

The ideal operational amplifier is represented by the symbol shown in

figure 9. The amplifier has a differential input and usually, but not invariably,

a single-ended output. Signals fed to the inverting, or negative, input appear
180 ° out of phase at the output, while signals fed to the non-inverting, or

positive, input remain in phase at the output. The ideal operational amplifier
has the following characteristics:

• Infinite gain

• Infinite input impedance between the + and - inputs

• Infinite common-mode impedance between each of the inputs and
ground

• Infinite bandwidth

• Infinite output-current drive Capability

• Infinite common-mode rejection so that only differential signals
are amplified

• Zero output impedance

• Zero input current to either terminal

• Zero voltage input results in a zero voltage output

• Characteristics listed above have zero temperature coefficients.
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o

o

FIGURE 9.- Symbol for an ideal operational amplifier.

o

A practical amplifier has none of the above properties, but how closely it

approximates the ideal is a measure of the quality of the amplifier. Since
some feature is usually emphasized at the expense of others, an operational

amplifier must be selected for the particular application in mind;for example,
low input-bias current might be obtained at the expense of bandwidth, should

offset be more important than high-frequency response.

The analysis of operational amplifier circuits is greatly simplified when

ideal performance is assumed because the following additional assumptions

can be made:

1. No matter what the output voltage is, the voltage between the + and

- signal inputs is zero; this is brought about by the infinite gain of

an ideal amplifier.
2. Because the ideal amplifier has infinite input impedance and requires

zero current bias, any current entering the nodes at the + and -inputs

must leave by some path other than the amplifier inputs.

Some basic circuits can be readily analyzed with the aid of these two assump-

tions.

Figure 10 is the circuit for a voltage follower, a circuit widely used in low-

pass and high-pass filters. Input voltage e I results in output voltage e2; note

that e2 appears not only at the output but also at the inverting or - input.
From assumption number 1, there is no potential difference between the

input terminals; thus e 2 must equal e I and the circuit gain must be e2/e 1 = 1.
Figure 11 shows the circuit for an inverting amplifier. This contrasts with

the voltage follower of figure 10 which has no inversion. Since the plus input

is grounded and is at zero volts, the minus input must also be at zero volts

(a virtual ground) as indicated by assumption number 1. According to as-

sumption number 2, the current in the input resistor must equal the current

in the feedback resistor, whereupon

e 1-0 _ 0-e 2 (13)
R R

and

e 2
- 1

e I
(14)
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FIGURE 10. - An operational amplifier connected to function as a voltage
follower.
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I--A-A_A-_ A A d
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FIGURE 1l. - The unity-gain inverting amplifier has equal values of

resistances in the input and feedback loops.
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As with the voltage follower, the gain is again unity, but the minus sign

indicates a signal inversion, of a 180 ° phase shift between input and out-

put.

Figure 12 shows an integrator; a circuit capable of integrating a time-

variable input e I with respect to time. Circuit performance is easily analyzed
using operational calculus in which 1/p represents integration and the capaci-

tor has an impedance of I/pC. Again, the inverting input is at a virtual ground

and currents in the resistor and capacitor are equal;hence,

e 1 -0 0-e 2

R 1/pC
(15)

i:A-A A-Ad

! _

and

1 1
..... e I (16)e2 RC p

ly RC el dt (17)

[!

Figure 13 is the circuit for a 2-pole, low-pass filter. The operational ampli-

fier is used as a voltage follower; accordingly,

e4 = e 3 (18)

Also,

iI = i 2 + i3 (19)

from which,

e I -- e 2 e 2 -- e4 e 2 -- e 3
- +_ (20)

R 1/pC 1 R

From assumption number 2,

so that

i3 = i4 (21)

e 2 -- e 3 e 3
m

R 1/pC 2
(22)
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A--A-A_A_ A • i
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FIGURE 12. - The operational amplifier with an input resistor and a capacitor

in the feedback loop performs as an integrator.
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FIGURE 13. -:- The diagram of an elementary RC active low-pass filter.
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Equations (18), (20), and (22) can be solved to give

e4 R2CIC2

-- = 2 1 (23)

e 1 p2 + P'_I +
R2C1C 2

Equations of the form of equation (23) can be used to design filters, as

explained in the appendix. As an example, in order for a 2-pole, low-pass

filter to have a Butterworth or maximally-flat amplitude response, it must

have the transfer equation

eout 1
- (24)

ein p2 + V_"p + 1

Also, the 3-dB angular frequency (6% rad/sec) for the low-pass filter de-
scribed by equation (23) is the square root of the last term in the denomi-

nator of equation (23), or

1
¢o - rad/sec (25)

c R X/-_IC2

A--dlb_A'A A A • d
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If a 2-pole Butterworth filter with a 3-dB angular frequency of w c = 1
rad/sec is desired, the following choices can be made: R = lfZ, C 1 = _ F,

C2 = 1/_'-F, for if these values are substituted into equation (23), there is

obtained the Butterworth equation (24), and _oc = 1 rad/sec from equation
(25). For further information on the design of this particular circuit, see the

appendix.

Illustrations so far have demonstrated how simple filter circuits can be

analyzed when an ideal operational amplifier is assumed to be the active

element. A generalized discussion of the effects of all the nonideal opera-

tional amplifier characteristics on an arbitrary filter is outside the scope of

this handbook and, indeed, may not be possible. References 4 and 18 give

very complete information on operational amplifiers and provide further
information on RC active filters. This handbook will, however, concentrate

on certain critical characteristics that affect commonly used filters. These
are:

• Finite open-loop gain and bandwidth
• Slewing rate

I I I 1 [ | I I I l [ I I l
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• Finite input-resistance

• Nonzero output-resistance

• Input offset and drift

33
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Effect of Finite Open-Loop Gain

The amplitude-response and phase-response curves for a typical opera-

tional amplifier are given in figure 14. The low-frequency gain of the ampli-

fier is 100 dB, or 100,000, and the low-frequency phase shift is essentially

zero. At some frequency (often below 10 Hz as in this case) the gain begins
to fall off, usually at 6 dB per octave. A slope of 6 dB per octave is used

because it provides ihe basis for stability when feedback is applied properly;

this comes about because the maximum phase shift is -90 ° for all gains from

100 to 0 dB (105 to 1). Negativ e feedback means that there is an additional

-180 ° of phase shift outside the amplifier, and so the maximum phase shift

for all usable gains is -(180 + 90) = -270 °. Since it takes 360 ° of phase shift

(input and output in phase) for an instability in the form of oscillations to

occur, a 6-dB-per-octave-slope operational amplifier will be stable if negative
feedback is applied properly.

A very important indicator of operational amplifier performance can be

extracted from figure 14 by inspection, namely, thegain margin for a partic-

ular application. First note that the gain without feedback is called the
open-loop gain, while the gain achieved by the application of feedback is

called the closed-loop gain. The gain margin is the difference in gain between

the open-loop and closed-loop gains. The open-loop and closed-loop gains and

gain margin for an amplifier with a dosed-loop gain of 20 dB (x 10) are

shown at some frequency jr in figure 14. The significance of gain margin is

as follows: The gain of an operational amplifier circuit depends solely on
the external feedback elements and not on its internal transistors and resistors

as long as there is adequate gain margin. For example, for the 20 dB gain

dosed-loop plot shown in figure 14, the gain margin varies with frequency
as follows:

1 Hz, gain margin = 80 dB

10 Hz, gain margin = 80 dB

I00 Hz, gain margin = 60 dB

1 kHz, gain margin = 40 dB

10 kHz, gain margin ---20 dB

100 kHz, gain margin = 0 dB

For most applications of operational amplifiers, including active filters, a

gain margin of 40 dB is sufficient, but even 20 dB is often adequate, depend-

ing on accuracy requirements. If 40 dB of gain margin is needed with a
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FIGURE 14. - Amplitude response of typical operational amplifier.
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closed-loop gain of 20 dB, an amplifier having the response shown in figure

14 can be used only up to 1 kHz, while if 20 dB is satisfactory, then the
frequency can be extended to 10 kHz. This discussion illustrates a funda-

mental limitation of RC active circuits; that is, the limited frequency response

of the operational amplifiers used for the active elements.

The following example illustrates the effect of finite bandwidth on the

voltage follower, an operational amplifier configuration used extensively in
active filters.

I _ I I I

EXAMPLE 10: Find the magnitude of the gain at 100 kHz of a voltage

follower that uses the operational amplifier for which the frequency response
is plotted in figure 14.

SOLUTION: Referring to figure 15, the follower has an input voltage el,

an output voltage e2, and an open-loop gain of A o (it is nonideal in this
respect). The output voltage is equal to the voltage difference between the

input terminals of the amplifier times Ao, or

e 2 = A o(e I -e 2) (26)

Rearranging equation (26) gives the closed-loop gain Ac,

e2 1
A =

e el 1 + 1/A °
(27)

I El _ I mm I

el o
#

e1 - e2

FIGURE 15. - An operational amplifier used as a voltage follower.

If A o is infinity, as with an ideal operational amplifier, then the closed-

loop gain A c = 1. In this example, however, IAol = 20 dB or 10 at 100 kHz.

It is not correct to substitute IAo[ = 10 into equation (27) because an incor-
rect answer of 0.9091 will be obtained, which is more than nine percent
lower than the ideal gain of one.

In the region where the gain is falling off at 6 dB per octave, A o is a vector
quantity and must be substituted as such into equation (27). The curve in

figure 14 is a plot of the magnitude of A o or IAol; accordingly,
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A ° = IAo[ (cos0 + j sin0). (28)

For this example, assume 0 is nearly -90 °, also, IAol = 10, so that

A ° = -j 10 (29)

Substituting A o from equation (29) into equation (27) gives

1 1 [1 - 0.1j] (30)
Ae = "1 + 1/(-j 10) = 1.0---_

The 7nagnitude of A c is then

[Ae[ = 0.99504 (31)

which is only about one-half percent below the ideal value of one.

--ll--i---l-li" ll-dt I I-d

B U l _ I • I
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There are factors other than gain that can affect the high-frequency

performance of an operational amplifier; notably, phase shift and input

capacitance. Another important factor is the slewing rate.
• ll ID iti 'Ii li n

Slewing Rate

Slewing rate is the maximum rate at which the output can change and

it is usually expressed as volts per microsecond. Often it is specified for the
condition where the amplifier in the voltage-follower configuration is deliver-

ing the rated output voltage across the rated load. If inverting and noninvert-

ing slewing rates are different, the lower of the two should be specified. For
some 741-type amplifiers, the slewing rate is about 0.7 V//xsec. The slewing

rate is an indicator of the maximum frequency at which the rated output

can be varied without significant distortion. The output frequency F and

the slewing rate S are related by
S

F = 21rE (32)

where E is the rated peak-output voltage.

EXAMPLE 11: A 741-type operational amplifier used as a voltage fol-

lower has a slewing rate of 0.7 V//xsec and a rated peak-to-peak output of

r v V v v' V ]
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26 V into 2 k_2. What is the maximum frequency at which the rated output
can be delivered without significant distortion?

SOLUTION: Given

then,

S = 0.7 V/gsec

E = 26/2 = 13 - V peak

F = (0.7) = 8.6 kHz
(21r) (13)

Since the numbers used are approximate, F would probably be rounded off
to 10 kHz on a data sheet.

i_i-i i li
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Slewing rate affects the impedance-scaling procedure as discussed previous-

ly under Frequency and Impedance Scaling. The amplifier in an active filter
must supply current not only to the load, but also to the feedback elements

connected to the output. Since the feedback elements are effectively part of

the load, there are limitations on how low the impedance values of the RC

elements can be, as illustrated in the following two examples.

EXAMPLE 12: The inverting amplifier circuit shown in figure 16(a) is
intended to supply 20 V peak-to-peak at 10 kHz without distortion to a

3-ki2 load. The slewing rate S is 1 V//asec and the rated output of the ampli-
fier is 25 V peak-to-peak into 2 k_2. What is the minimum value for R?

SOLUTION: Given

S = 1 V/#sec

E = 25/2 = 12.5-V peak

and substituting in equation (32)

F - (1) - 12.7 kHz
(21r) (12.5)

The amplifier can therefore deliver 25 V peak-to-peak at 12.7 kHz into
2 kI2. All these numbers are typical, so it would be wise to account for the

use of an atypical amplifier by derating to 20 V peak-to-peak at 10 kHz;

V v v V '
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-A--I-A_-A-A-A A-d

R1 R2

16(a) Inverting amplifier.

0.0225 #F

II
1;1

10 k_2

R1
Y R2 ]_

0.01125 _F _- C2

m

16(b) Low-pass filter prototype.
225 pF

II

RL_ 3 k_2

R I N U B If ]

! I 1 I
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20 kQ .

20 kS2

112.5 pF

RL_3 k_

16(c) Frequency- and impedance-scaled low-pass filter.

FIGURE 16. - Circuits for showing effects of slewing rate on selection
of passive element values.
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that is, to the conditions set in the problem. The minimum load is therefore

2 kI2. The load on the amplifier is the 3-ki2 external load in parallel with

R 2, for which the left-hand side is effectively grounded. Since R2 in parallel
with 3 kI2 must equal 2 kI2,

Product (3) (2) _ 6 kI2
R2 - Difference - (3- 2)

A value of R 1 = R 2 of equal or greater than 6 kI2 would be suitable.

"\
! !_ !! !1

EXAMPLE 13: The circuit in figure 16(b) is for a low-pass Butterworth

filter with a 3-dB cutoff frequency of 1 kHz. Redesign for a 50-kHz cutoff

if the load is to be 3 ki2 and the output is to be 20 V peak-to-peak. The
amplifier can deliver 10-mA peak.

SOLUTION: This problem involves frequency-scaling and impedance-
scaling as previously described and as in table II (page 18). From table II,

fc/fn is 1/50. First try leaving the capacitors as they are and scaling the

resistors, giving R 1 = R 2 = 0.2 kl2. The filter is now redesigned for 50 kHz,

but it is necessary to determine whether the operational amplifier can sup-

ply the total load. An exact analysis for all conditions is fairly involved, but
a workable design can be realized by solving a "worst case" situation.

The load on the filter consists of the 3-k12 resistor RL, and C1;the
amplifier must be able to supply current to both of these. Since the output

is 20 V peak-to-peak, the maximum current into R L is 10 V/3000_2 = 3.3

mA. It is not easy to determine the maximum current into C1, but a worst
case would be when point X on figure 16 is at +10 V and point Y at -10V,

giving 20 V across C1. (Point X at -10V and point Y at +10 V also gives
20 V across C 1 .) Beyond 50 kHz, the filter output is rolling off, and a 10oV

output would not be obtained from a 10-V input beyond a cutoff frequency.

However, since the impedance of C 1 decreases as frequency increases, the
loading by C 1 of the amplifier will get worse at higher frequencies. There-

fore, consider the loading by C I at 100 kHz with 20 V across it. The current
through C 1 is

Voltage across C 1 V
i ---- -- C

c Impedance ofC 1 (1)/(27rfC1)

20

= 1/(21rXlO5XO.0225XlO_6) 283 mA

El El • ,ram mm ]
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This current is not necessarily in phase with the 3.33 mA into R L, and an

exact analysis would involve vector addition of the 283-mA and the 3.33-mA

currents; however, it is obvious that the amplifier, with its lO-mA peak out-

put current capability cannot supply its load and that capacitor C 1 is the

problem.

If C 1 is scaled by a factor of 100 to increase its impedance, ic will be
reduced to 2.83 mA and, ignoring vector addition to give a worst case, the

maximum current the amplifier could be called upon to supply would be

2.83 + 3.33 = 6.16 mA, which is satisfactorily below the lO-mA rating of the

amplifier. From table II (page 18), it is evident that if all capacitor values are

divided by 100, R 1 and R 2 (=0.2 k_2)must also be multiplied by 100 to keep
the same cutoff frequency. The final design is shown in figure 16(c).

Effect of Finite Input impedance

The effect an operational amplifier with a finite input impedance has on

an active filter depends on whether the amplifier is used in an inverting or

noninverting mode. The voltage follower is an example of the noninverting

mode and is very commonly used in active filter circuitry; consider the circuit

in figure 17(a). Between the input terminals of the amplifier there is a resistor

Rin, and from each terminal to ground there are common-mode resistors, Rc-
From each input terminal to ground there are capacitors C; for purposes of

simplification, the capacitors and the resistors are assumed to be fixed in
value.

Because R c and C are grounded, the feedback has no effect on their
effective values and they modify filter design simply by paralleling any

component from the input to ground. The effective value of Rin is deter-

mined by multiplying Rin by the circuit-loop gain, which is approximately
the ratio of the open-loop gain to the closed-loop gain. For a follower, the

closed-loop gain is nearly unity; consequently, at de and low frequencies,

the effective value of Rin becomes very large, but at high frequencies the
effective value is reduced as the open-loop gain falls off.

\

!! 1

• l n IE]! nil ,m m

EXAMPLE 14: A voltage follower has a gain of 0.999 at dc with Rin =

1 M_ and R c = 100 M_. What is the input resistance at de?

SOLUTION: If e 1 in figure 17(a) is +1 V, then e2 will be +0.999 V

and the voltage across Rin will be 0.001 V. The current through Rin is
(0.001 V)/(1 MS2) = 0.001 /aA. The current in Rin results from applica-

tion of an input voltage of t V, so the effective input resistance of Rin

is (1 V)/(0.001/aA) = 1000 M_2. The effective input resistance appears in

parallel with the Rc connected to the + input. (The other R c is isolated

g' 5:_ _
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17(a) On voltage follower.
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17(b) On low-pass Filter.
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FIGURE 17. - The effect of finite input impedance.
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by the high effective Rin.) The net input resistance is therefore 100 M_2 in
parallel with 1000 M_2 or 90.9 M_2.

-A--iA-_A-A A A-d

The above example illustrates what is often the case with follower cir-

cuits, namely that the input resistance is almost entirely determined by

the common-mode resistance, at least at frequencies where the follower

gain approaches unity.

In low-pass filters, such as in figure 16(b) and (c), the external resistors
in the RC network form an attenuator with the effective input resistance

and with any input capacitors. Correct circuit design involves impedance-

scaling and operational amplifier selection to ensure that the attenuation is

ade..quately small, usually less than one percent.

In high-pass filters, a resistor, 2R, is sometimes connected as shown in

figure 17(b) in order to reduce the effects of amplifier input current, as

explained in the Input Offset and Drift section that follows. It is not un-
common for such a circuit to oscillate, especially is 2R is large (a few meg-

ohms) as in low-frequency, FET operational amplifier circuits. The extra

phase shift in the negative feedback loop produced by 2R and C in figure
17(b) induces oscillation, but such oscillations usually can be eliminated by

paralleling 2R with a capacitor or by reducing R (and hence 2R) by imped-

ance-scaling.
It can be shown that the main effect of the various input resistances and

capacitances on the inverting configuration is to reduce the loop gain. Unless

the amplifier is being used near the upper limits of its frequency range, the

effect is usually small enough to be neglected.

R i

Effect of Nonzero Output Impedance

Most operational amplifiers have fairly low open-loop output resistances,

1000 ohms being typical. When negative feedback is applied, the open-loop

output resistance is reduced by approximately the ratio of the open-to-closed-

loop gains. At lower frequencies, where the open-loop gain is very large, the

effective output impedance is often a small fraction of an ohm, thereby mak-

ing the amplifier approach the true voltage source often assumed in filter

design.

The main problem resulting from nonzero output resistance occurs at

high frequencies when the amplifier is driving a capacitive load such as a

coaxial cable (see figure 18(a). As the frequency increases, the open-loop

gain drops and the effective output resistance increases. The output resistance

and any load capacitances form a lag or low-pass network that introduces

additional phase shift into the feedback loop. The additional phase shift adds

to other phase shifts in the feedback loop and may cause oscillations. One

v _ V v v' V '
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FIGURE 18. - Effect of output resistance with capacitive loading.
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solution to this problem is to reduce the load capacitance; another is to

isolate the load capacitance with a resistor, R, in figure 18(b). Usually a
value of 100 to 1000 _2 is sufficient, and if the following circuit has an

input resistance of 1 M_2 or more, loading errors are often insignificant.

Input Offset and Drift

An ideal operational amplifier would have zero-voltage output for a

zero-voltage input, but with a practical amplifier there will always be an

output even when there is no input because there are two sources of offset

at the amplifier input, one a voltage offset and the other a current offset.

The offsets are independent of each other and their relative effect on the

output depends on the particular circuit in which the amplifier is being used.

Low-pass active fdters are the ones most commonly affected by offsets, and

it is the operational amplifier input current that usually has the greatest
effect. Currents in the inverting and noninverting inputs are called bias

currents and the difference between the two bias currents is called the cur-

rent offset. The input currents flow through various external resistors, de-

pending on the actual circuit used; in conjunction with the input voltage off-

set, input currents combine to produce a net output voltage offset.

Some low-pass filters consist of several operational amplifiers connected

in series, but separated by resistors as in figure 33. For low-frequency filters,

the resistors may have such large values that currents flowing through them

produce large offsets that may be disadvantageous in some applications.
Corrective steps include rescaling to use smaller resistor values, the use of

amplifiers with low bias-currents and offset-currents and the use of cancel-

lation techniques to reduce offset effects.

It is usually possible to cancel the effects of offsets, but the extra com-

ponents needed are often undesirable ones such as potentiometers that
must be set individually. It is better, where technically and economically

feasible, to use an operational amplifier that has offsets small enough to

be neglected. Even when offsets are cancelled, a problem remains because
cancellation is only perfect at one temperature. The variation of offsets

over a period of time because of aging or changes in temperature is called

drift. It is usual to refer offsets and drift to the amplifier input, since the

resulting values are independent of gain and circuit configuration. More

importantly, the values can be compared with input signal levels as an indi-

cator of performance.
The effects of voltage and current offsets can be studied with the help

of the equivalent circuit of figure 19.
The effects of offset are readily discerned when there is no signal at

either input, so R 1 and R 2 are grounded. The input bias currents are I 1

and 12 and the input offset voltage is Vo. The offset current, Io, is the dif-
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Ih*A--_ A All

I U • I 1

I1 + 13
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R11
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Voltage between + and - inputs = 0
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FIGURE 19. - Operational amplifier circuit showing equivalent voltage-
and current-offset generators.
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ference between I 1 and 12, or 12 -I 1. The output voltage, Vou t, is the result
of the sum of L:le various offset effects.

Only two equations need to be solved to obtain a useful expression for

offset effects; since Vou t equals the sum of the voltage drops across R 1 and

R3, then

Vou t = (I 1 + I3)R 1 + I3R 3 (33)

Also, the potential drop around the loop that contains R 1, V o, and R 2 is

zero; thus

(I 1 + 13) R 1 - V ° - I2R 2 = 0 (34)

Equ_itions (33) and (34) can be solved to give

Vou t = V ° + + I2R 2 + - I1R 3 (35)

Since the coefficients of I 1 and 12 in equation (35) are opposite in sign,

Vou t can be minimized by making their coefficients equal. From

(36)

there is obtained

R 1R3
R E- = (37)

R 1 + R 3

Equation (37) reveals that when R 2 is made equal to the equivalent parallel

resistance of R 1 and R 3, Vou t is minimum. Substituting equation (36) into

(35) and recalling that 12 - I 1 = Io gives

Vou t = V ° + + IoR 3 (38)

Equation (38) permits computation of the output offset when the inputs are

shorted to ground, given the offset voltage and current (V o and Io) and the
circuit resistances, if the effective resistances on the + and - inputs are equal.

The equation gives a worst-cas e result, but it is also possible for the voltage
and current effects to subtract and provide a lower output offset.
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EXAMPLE 15: The circuit diagram of a 24 dB-per-octave, low-pass

filter is given in figure 20. The amplifiers have offset voltages of 10 mV

and offset currents of 10 nA. What is the output voltage when the input
is shorted to ground?

SOLUTION: Since the problem is concerned with dc offsets, the capaci-

tors function as open circuits and have no effect on dc performance; also,

equation (38) may be used directly, noting that there are 200-kfl input

resistances at both inputs. The two stages are identical, and a worst-case

condition can be obtained when all current and voltage offsets are additive.

Comparing one stage of figure 20 with figure 19, it is evident that R 1 = 0%
R 2 = 200 k_2, and R 3 = 200 k12. Hence

Vou t = (10 mV) (1 + _) + (10 nA)(200 kI2)

= 10mV + 2mY = 12mV

(ii-il II II d

f ff gg I ]

I !-t
The output voltage may be plus or minus depending on the polarity of the
offsets. For two stages, the output would be 24 mV at most.

EXAMPLE 16: The circuit diagram of a 12 dB-per-octave, high-pass
tilter is given in figure 21. What is the output voltage with the input shorted

to ground if the amplifier has V o = 10 mV, I o = 10 nA and the bias current
12 indicated in figure 19 is 100 nA?

SOLUTION: The resistances at the plus and minus inputs of the amplifier

are not equal, so equation (38) cannot be used, but equation (35) may be

used because it applies to unequal resistances. Comparing figures 21 and 19, it
is seen that

R 1 = (- input to ground) =

R 2 = (+ input to ground) = 200 kfl

R 3 = (feedback resistance) = 0

(The 100-k12 resistor has no effect on the dc performance because it is iso-

lated by two capacitors.) Substituting in equation (35),

! v v V

Vout = (10mV) (1 +"--_ + (100nA) (200k[2) (1 +--_ - (I1)(0)

= (10mV) + (20 mY) = 30mY
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FIGURE 21. - Offset in a high-pass filter.
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Drift, which represents changes in offset because of aging and temperature
variations, can be studied by methods similar to those used to study offsets.

Use is made of figure 19, equation (35), and equation (38), but it is necessary

to make substitutions; for example, offset changes caused by variation of

temperature. Following are some applicable symbols formed by using lower-

case letters for temperature or time coefficients and upper-case letters for

dc offsets and biases:

v ° = temperature coefficient ofV o

i° = temperature coefficient ofI o

i1 = temperature coefficient ofI 1

i2 = temperature coefficient ofI 2

EXAMPLE 17: Figure 22 is the circuit diagram for a bandpass filter.

The value for the temperature coefficient of the offset voltage, vo, is 10

/aV/°C; I 1 is 100 nA at 25°C and doubles for every 8°C increasein temperature.
What is the maximum output change from 25 ° to 50°C?

SOLUTION: Since the resistances at the plus and minus inputs are un-

equal, equation (35) must be used. First calculate V o and I 1 changes for the
range 25 ° to 50°C:

At = 50-25 = 25°C

vo = 10/N/°C

AV ° = Atv ° = 250/aV

Given the value of offset current at 25°C and that it doubles every 8°C, at

any other temperature the value is.

[ T-2s]
IT = [2 8 ]i25 (39)

For T = 50°C

I50 = (100nA) = 872 nA

-A--II--A_ A-A-A Ad

I I ff ff U • ]

• I n _ _ _ n

The change in 11 , AI 1, is therefore 872 - 100 - 772 nA, and this value can
now be substituted into equation (35). Comparing figures 19 and 22, the

resistance R 1 from the negative terminal to ground is infinite, R2 is zero, and

R3 is 100 kI2. It is also necessary to replace V o and I 1 by AV o and AI 1.
Note that the I 1 term in equation (35) is negative because I 1 always has an

opposite sign to 12 . However, all the signs in equation (35) are arbitrary;
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FIGURE 22. - Bandpass amplifier with temperature drift.
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thus V o can add or subtract from 11 or 12. For a worst case the signs are

adjusted to add the effects of AV o and AI 1'

AVou t = (250/_V) (1 + lOOkS2) + (772 nA) (100 k_2)

= 250/iV + 77,200 pV = 77.45 mV

A--A-A" A-A A A-d

PASSIVE COMPONENTS

Introd uction

The most important requirement of the resistors and capacitors used in
filter circuits is stability. Initial accuracy is of secondary importance because

any type of component can be selected or trimmed to a desired value. Once

a resistor or capacitor of a given value is inserted into a filter, it is important

that the value be stable; the required degree of stability depends on the

application. If the cutoff frequency, center frequency, bandwidth or filter

shape must be held very closely, then stable components with accurate

values must be used. The requirements for stability and accuracy are more

stringent for high-Q than for low-Q circuits. Sometimes advantage can be

taken of the fact that resistor and capacitor values appear as RC products in

the formulae for filters; thus when resistors that have a temperature coef-
ficient (TC) of +X ppm/°C are used with capacitors that have coefficients

of -X ppm/°C, a degree of compensation can be obtained.

! 1
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Resistors

As usual, selection of the type of resistor to be used in the construction

of a filter is a compromise between performance and cost. The best com-

ponents and the most expensive should be used only where necessary. For

low-Q circuits and room-temperature applications, carbon composition
resistors that have a TC ranging from about 250 to 500 ppm/°C may be

used. Note that the value of a component with a TC of 500 ppm/°C will

change by one percent over a 20-degree range.
For most applications, the metal-film resistor is the best compromise

between cost and performance. Various TC's are available, and 100 ppm/°C

is typical, but resistors with coefficients of 10 ppm/°C are available. For the

most demanding applications, wirewound resistors (of the noninductive

r _ v v v v t
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type for high-frequency applications) are available with TC's of a few ppm/
OC.

Resistors may also be purchased in integrated circuit form in which the

temperature stability of trim resistors is superior to diffused or pinch resist-

ors, Thin-film resistors are generally superior to thick-film types for long-term
stability, but high values of resistance are difficult to manufacture. The TC's

of thick-film and thin-film resistors are comparable.

t A-A A A d

| IB N _ ]

Capacitors

When selecting a capacitor for an RC filter, the designer must choose

not only on the basis of cost and performance, as with resistors, but must

also consider size. The best capacitors are not only the most expensive,

but also tend to be physically large, for example, large-value polystyrene

capacitors. In general, capacitors vary more with temperature, time, applied

voltage, frequency, and mounting pressure than do resistors. Also, just as a
resistor will have stray capacitance associated with it, so will a capacitor have

losses in the form of equivalent resistances. Since filters are often designed-on

the basis that ideal capacitors are used, the fact that practical capacitors

have losses and are therefore nonideal introduces inaccuracies to a greater or

lesser degree in the final filter. There are a number of conventional ways to

describe the losses in a capacitor, the three most common being the quality

factor or figure of merit Q, the dissipation factor D, and the power factor

PF. These are defined with the aid of the vector diagram in figure 23 as
follows:

Capacitive reactance _ 1
Q = Effective series resistance co CR -- tan 0 (40)

1 1
D =--_-= coCR =

tan'----O (41)t/ F V v !

PF = cos0 (42)

where 0 is the angle by which the current and voltage in a capacitor are out

of phase. For a lossless capacitor, 0 would be 90 °. For most capacitors, 0 is
very close to 90 ° and it can be assumed that

1

D = -_- = PF = coCR (43)

because for 0 close to 90 °, cos 0 _--I/tan O.
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0
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FIGURE 23. - Designation of the capacitor phase angle 0.
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The performance of a capacitor depends primarily on the dielectric mate-

rial used. A material with a high dielectric constant permits construction of a

Capacitor with a small volume because of the following relationship:

Capacitance of a capacitor with
Dielectric constant of the material as dielectric

a material = Capacitance of the same capacitor (44)
with vacuum as dielectric

Dielectrics have ac losses, dc leakage paths and, because of dielectric

absorption, can retain charges that are not removed when capacitor leads

are shorted. The dielectric constant, and hence capacitance, is affected

by temperature, time, and applied voltage. The effect of applied voltage
on capacitance can be minimized by operating a capacitor well below its

maximum voltage rating. Table III lists common dielectric materials.

Selection of Odd-Value Components

An unfortumate fact about most filter designs, including those for RC

active circuits, is that they usually specify nonstandard component values.
If a fdter is to be produced in large quantities, it is worth the cost and time

to obtain special values. However, if one or only a few filters are required,

the designer is confronted with the problem of generating nonstandard-

value components from combinations of available components. The resistors

or the capacitors in a circuit often can be scaled to be standard values; an
example of this kind of scaling is shown in figure 24. Both circuits are

lO00-Hz, low-pass Butterworth fdters with identical responses. The circuits

have been impedance-scaled (see table II, page 18) so that the circuit in

figure 24(a) uses standar6-value resistors and nonstandard capacitors; the

opposite situation is shown in the circuit in figure 24(b). Two questions

can be asked: Which of the two circuits is better and, having selected a
circuit, how can one obtain the necessary odd-value components?

At first sight it might appear that the circuit in figure 24(b) would be
the better choice since it uses standard-value capacitors of 0.01 and 0.02

/_F, and it is easy to obtain the required resistors by using one-percent pre-
cision components. For example, an 11.25-k_ resistor accurate to one

percent can be obtained by combining an ll.15-kfZ one-percent resistor
with a 100-£Z lO-percent resistor. Note that the 100-_2 resistor need not

be a one-percent component since 10 percent of 100 _ is 10 _2 and this

discrepancy will contribute less than a O.09-percent error to the final value of

11.25 kI2. However, it is also assumed that one-percent capacitors are avail-

able; if they are, the Edter can be built with the following components:

0.01- and 0.02 -/.iF capacitors (one percent)

11.15-ki2 (1 -percent) and 100-I2 (10-percent) resistors

IA-A I1 A i

I! _ II ! I

r v v V

!! 1I [ E | [ il Z K I z [ x i t: 1" II 1 I

I l"i II I II I I 1 III II I []



56 RC ACTIVE FILTER DESIGN

TABLE III. : Typical Values for the Temperature Coefficient ( TC}
of the Dielectrics Used in Capacitors

Dielectric ppm/° C Remarks

Polystyrene + 10 to + 100 Long-term stability, but
use is limited to about

+85°C.

Polytetrafluoroethylene - 1O0 Useful to +125°C.

(PFTE; Teflon)

Polycarbonate + 100

150"Mylar

Paper + 500

Silver-mica -+100

Glass + 150

Ceramic **

Tantalum oxide -+ 1000"**

TC is small at room

temperature.

Very compact types are
metallized. Good for

general purpose use.

Unstable with time, but
low cost.

Used for stable, low values.

Used for stable, low values.

Large values have poor TC

and stability with time.

Only used as a last resort in
RC active filters. Polarized

types can be used with up
to 0.5 V of reverse-bias.

* TC is very nonlinear.

** Different types vary from a few ppm to 10,000 ppm.

*** Varies widely.
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10 k,.(2

l O 02250/_F

0.01125 _F I

24(a) Design of a 1000-Hz low-pass Butterworth filter with standard
resistance values.

O
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11.25 ka'2

1
0.02 vF

7

0.01 _F I

24(b) A 1000-Hz low-pass, Butterworth filter with standard capacitance
values.

FIGURE 24. - Examples of scaling resistance and capacitance
values to standard.
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Usually, one-percent capacitors are not available and it is necessary to use

5-percent or 10-percent components and to select appropriate units, but if

5-percent or 10-percent tolerance capacitors are used, there is always a

possibility that all in a given lot will be found to be greater than 0.01 or
0.02 /_F. The only way to obtain a 0.01 -/.tF one-percent capacitor from

a 0.01 - _F 5-percent capacitor, which turns out to be, say, 0.0105 /2F,

is to connect a 0.21 - /IF capacitor in series with it. To trim a capacitor

value by connecting a much larger value capacitor in series is feasible in

this case but, at lower frequencies, trimming a 1 -/_F with a 100-/aF capacitor

would most likely be impractical.
With luck, a 0.01 -/_F capacitor might be found to be less than 0.01/2F;

in this instance, trimming may be effected by connecting smaller capacitors

in parallel. For example, if the 0.01 -/aF 5-percent capacitor was found to
be 0.0095/2F, a 0.0005 -/aF (500 - pF) capacitor could be connected across

it as a trimmer, and because one percent of a 0.01 -/aF capacitor is 100 pF,

a 500-pF 20-percent unit would thus give 0.01 /_F within one percent. A

5-percent 500pF capacitor would allow for errors in bridge measurement.

Regardless of the methods employed for trimming, if the circuit of figure

24(b) is used (because it uses readily available 0.01 -/aF and 0.02 -/aF capac-

itor values), it will be necessary to select capacitors when 0he-percent-accura-

cy types are not available. Also, two components must be used for each of

the 11.25-k_2 resistors. Probably it is better to use the circuit of figure

24(a), because one-percent precision resistors can be used for the 10,000-

ohm components and it won't be necessary to make up special resistor
values. In any event, it still is necessary to select capacitors as for the case

of the circuit of figure 24(b). Suppose that capacitors of 5-percent accuracy
are available and that they have nominal values of 0.022/IF and 0.01/.tF, but

on measurement they are found to be 0.0215/aF and 0.01/aF, respectively. The

0.0215 -/2F capacitor is already within 4.5 percent of the desired value. A

0.001 -/aF capacitor with a 20-percent tolerance or better in parallel with the

, 0.0215 -/IF capacitor will provide a capacitor that is within one percent of

0.0225/aF, the desired value. The 0.0105 -/2F capacitor is too small by 0.00075

/.iF (750 - pF), or about 6.7 percent; however, by placing a 750-pF 10-percent

capacitor in parallel with it, the desired value of 0.0105/_F will be obtained

to better than one percent.

All

! W 11 U
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SELECTION OF NUMBER OF POLES

The pole-zero approach to filter design is discussed in the appendix, but

at this point it is pertinent to note that, in general, the more poles a given

type of falter has, the steeper will be the attenuation slope in the transition

from passband to stopband. Because an ideal falter has an inf'mitely steep
attenuation slope, the more poles a filter has, the closer it will approach
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the ideal. Unfortunately, more poles are obtained at the expense of greater

complexity and more parts. Compare, for example, the circuits and attenua-
tion slopes of the Butterworth filters shown in figures 29 and 33. The filter

in figure 29 is a two-pole filter of low complexity with a 12-dB-per-octave

cutoff. The filter in figure 33 is an eight-pole filter of increased complexity,
but it provides a 48-dB-per-octave cutoff.

For the low-pass and high-pass filters described in chapters 3 and 4, and

for many types of bandpass filters, one pole essentially corresponds to

6 dB per octave, which is why the 2-pole filter has a 12-dB-per-octave cutoff
slope and the 8-pole has a 48-dB-per-octave cutoff slope. Often the number

of poles is equal to the number of RC sections, as is true of the low-pass and
high-pass filter sections discussed in chapters 3 and 4. Sometimes a circuit

may have an unequal number of resistors and capacitors; for example, the
one shown in figure 22 is a bandpass circuit with three resistors and two

capacitors, but the input resistor and the resistor connected to ground in

this circuit are used as an input attenuator to make the filter gain practical.

Theoretically, these resistors could be replaced by a single equivalent resistor;

the filter characteristic would be the same, but with a higher scale factor or

gain. Moreover, the circuit now would have two resistors and two capacitors,
as is common with 2-pole filters.

As usual, it is the job of the designer to compromise between performance

and complexity in selecting an appropriate filter design. More information

and some numerical examples on the selection of the number of poles are
given in the first sections of chapters 3 and 4.
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Low-Pass Filters

CHAPTER 3

i_a, A A a, i

SELECTION OF FILTER TYPE AND NUMBER OF POLES

This chapter describes the steps involved in the design of three types of
low-pass filters: Butterworth, Chebyshev, and Bessel. First of all, it is neces-

sary to select the appropriate filter for the application at hand; the three

types of filters are discussed at the beginning of chapter 2 and summarized

in table I. The Butterworth is a general-purpose filter that provides good

attenuation characteristics and maximum possible flatness in the pass region.
The Chebyshev filter has a steeper attenuation slope in the region of cutoff,

but this is achieved at the expense of ripple in the passband. The Bessel

filter has a poor attenuation slope and also poor flatness in the passband.

It is widely used for filtering pulses because its hnear-phase characteristic

minimizes the overshoot that can be a problem with low-pass Butterworth

or Chebyshev filters (see figure 3).

After selecting one of the three basic types of filters, the next step is to

decide on the number of poles that are to be used. For economy and sim-

plicity, it is prudent to select a filter with the least possible number of poles.
Elimination of unwanted signals and the reduction of noise are the two

most common factors that govern the number of poles in the filter.

EXAMPLE 1: A unity-gain filter is required to pass all frequencies up to

100 Hz with maximum flatness. Signals of 4500 Hz and higher must be

attenuated by at least 50 dB. How many poles are required in the filter?

SOLUTION: Figure 25 shows the idealized amplitude response curves

for a Butterworth filter (maximally-flat amplitude response) with 2, 3, 4,

6, and 8 poles, the number of poles for which designs are provided in this

handbook. A 4-pole filter will provide the necessary 50-dB attenuation,for
frequencies of 4500 Hz and above.

EXAMPLE 2: A unity-gain filter is required to pass all frequencies up
to 200 Hz with maximum flatness. Signals of 4000 Hz or more must be

attenuated by 50 dB or more. How many poles are required?

SOLUTION: Figure 25 applies to filters that have a cutoff at 1000 Hz.

Because frequency scaling does not affect the shape of the response curves,

the data in the figure may be applied to the problem of a 200-Hz cutoff

filter by dividing all numbers on the frequency scale by 5; the cutoffsare

61
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thus converted to 200 Hz. Accordingly, the number of poles required to
give 50 dB of attenuation at 4000 Hz is two (20,000 Hz divided by the

scaling factor is 4000 Hz).

k_A • • All

The data given in figures 34 to 38 and 39 to 43, respectively, may be

used to find out how much attenuation Chebyshev or Bessel low-pass _ters

with different numbers of poles will provide. Also, figures 29 to 33 provide
more accurate cutoff and attenuation information for the Butterworth filters

than is shown in figure 25; however, the data in figure 25 are accurate enough

for most purposes.

The problem of determining by how much a given filter will reduce

noise is more involved than the selection of number of poles. It has been

found convenient to study the noise performance of frequency-dependent

circuits, of which fdters are but one example, by means of an equivalent

noise bandwidth. The equivalent noise bandwidth curve is rectangular, as

indicated in figure 26, where there is displayed a low-pass filter response

curve with a cutoff Offc and the equivalent noise bandwidth curve with an

infinitely steep cutoff at fn" Once fn is known, the usual expressions relating
noise to bandwidth may be used; for example, it is known that thermal

noise is reduced by the square root of the ratio by which the bandwidth is
reduced.

EXAMPLE 3: A circuit has an equivalent noise bandwidth of 10 kHz

and a thermal noise level of 100 /aV. What will be the noise level en if the
bandwidth is reduced to 1 kHz?

SOLUTION:

en = [(1 kHz)/(10 kHz)l 1/2. (100/iV)

= (0.316)(100/aV)

= 31.6 taV

! I_ II I ]

r Y v V
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Unfortunately, the noise in most instances is not simple thermal noise

and it does not have the constant spectral density (that is, constant value

of /aV per root-hertz) required for the application of the simple square

root rule illustrated in example 3. In general, noise usually is greatest at

low frequencies (1/f noise) and at high frequencies (f noise). The deter-

mination of the exact equivalent noise bandwidth for multipole filters with
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FIGURE 26. - Equivalent noise bandwidth.
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the various Butterworth, Chebyshev, and Bessel responses is nontrivial.

Reduced to its essentials, the analysis would proceed as follows:

Let H(jco) = the transfer function of the filter

N d = the spectral noise density applied to the filter

e2n = the squared RMS voltage, resulting from noise of density N d

being applied to the network having a transfer function H(jco)

h_A-dh A A d

! ]_ E Nf l

Then

OO

_2n2= fo (Nd)tH(Jw)12df
(45)

If the spectral noise density is assumed to be constant, as with thermal

noise (but not with 1If or f noise), equation (45) may be simplified by

placing N d on the left side of the integration sign. To obtain an effective

noise bandwidth, the RMS voltage computed with the aid of equation (45)
is equated to the value obtained from an ideal rectangular response. The

simplest and most interesting result is obtained when equation (45) is ap-

plied to the case of a single-pole network, that is, one having a 6-dB-per-
octave slope. Referring to figure 26, in this instance it is found that

-Ic
•fn - - 1.571f c (46)

2

The result is interesting because it represents a worst case, one that can

be used to advantage because it simplifies the problem of finding out by

how much a filter will reduce noise. A filter with two or more poles will

remove more noise than the single-pole filter of performance represented

by equation (46). Moreover, a single-pole filter is not only a worst case,
it is also one of two endpoints. A single-pole filter will have more noise

than a multipole filter, but the multipole filter will have more noise than

the other endpoint, an ideal rectangular filter with a cutofffc (referring to
figure 26); this state of affairs is best clarified by the following example.

[! ! I I
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EXAMPLE 4: Noise with a constant spectral density of 2 mV/Hz 1/2 is

applied to a 6-pole Butterworth, 1000-Hz cutoff, low-pass filter. Find limits
• between which the noise must lie.
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SOLUTION: First observe that the noise out of the filter will be less

than for a single-pole filter with a cutoff of 1000 Hz, but greater than for

an ideal rectangular filter with a 1000-Hz cutoff.

For a single-pole 1000-Hz filter, the equivalent noise bandwidth is ob-

tained from equation (46) and figure 26:

fn = (1.571)(1000) = 1571 Hz

The noise output from the filter is the noise density times the square root
of the effective noise bandwidth or

en = (1571)1/2(2) = 79.27 mV

For an ideal rectangular falter, with fc from figure 26, the equivalent noise

bandwidth is alsof c, and in this instance the noise output would be

en = (1000)1/2(2) = 63.25 mV

For the 6-pole Butterworth filter, the noise will lie between 63.25 mV and

79.27 mV. In fact, the noise from a Butterworth filter with any number of

poles _ lie between these values. Two conclusions can be drawn from this

analysis: First, multiple-pole, low-pass filters are little better than single-

pole filters in reducing noise. Second, whenever noise voltage can be shown

to lie between two closely-spaced values, there is little value in performing

the extensive calculations implied by equation (45) to find the exact noise

voltage for filters with various numbers of poles.

II I_ IB I_ II • I
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To compare the effectiveness of single-pole and multipole fdters in reduc-

ing noise, 1,pole and 6-pole Butterworth low-pass filters were each fed with

the same amount of noise by the arrangement shown in figure 27(a). As can

be seen in the oscillogram reproduced in figure 27(b), the two filters show
little difference in noise levels.

All the Butterworth and Bessel low-pass filters in figures 29 to 33 and

39 to 43, respectively, are 3 dB down at 1000 Hz. If the filters are scaled

to another frequency by the techniques summarized in table II (page 18),

the new cutoff frequency will also mark a 3-dB point,
With Chebyshev filters, the situation is slightly more complicated, but

it is easily resolved. Plots of the amplitude-responses of 3-pole and 4-pole

1-dB-ripple Chebyshev filters are presented in figures 28(a) and 28(b), re-

spectively. These figures are not drawn to scale in order to emphasize certain
important features of the plots. The plots are values obtained from the clas-

sical formula for the amplitude response of the Chebyshev filters, which is

_ _ T v _ V
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10 k_

fc = 1 Out,

o single-pole

0.01592/zF filter

Gain = 1

fc = 1

6-pole low-Pass

Butterworth

filter from fig. 32

27(a) Test circuit.

OUt,

six-pole

filter

II I_ It m !

[] _ Irm Ill mm

Horizontal, 10 ms/cm

Vertical, 0.1V/cm

27(b) Upper trace, input noise; middle trace, noise from one-pole filter;
lower trace, noise from six-pole falter.

FIGURE 27. - Comparison of the performance of one-pole and six-pole
filters with noise as the input signal.
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Frequency, Hz

28(a) Three-pole, low-pass.
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Frequency, Hz
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28(b) Four-pole, low-pass.
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FIGURE 28. - Chebyshev amplitude responses.
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In(jw)l _/1 + e2c2(w) (47)

where e is a constant that controls the degree of ripple height, and Cn(o0 ) is
the Chebyshev polynomial, which is a function of the frequency and the

number of poles. For a 3.2Pole Chebyshev, Cn(cO) = 4co 3 - 3o_, and for a
4-pole, Cn(o_ ) = 8w 4 - 86_ + 1.

The key features of interest at this time are the gains at dc and at the

cutoff frequency fc; at cutoff, both filters are down by an amount equal
to the ripple or -1 dB, which is to be contrasted with the fact that the cut-

off of many other filters is specified as occurring at -3 dB. Note that the

3-pole filter has a gain of 1 (0 dB) at dc, but that the 4-pole filter has a
gain of -1 dB. In general, all 1-dB Chebyshev filters with an even number

of poles will be down 1 dB at dc and at cutoff, while all those with an odd
number of poles will be down 0 dB at dc and 1 dB at cutoff.

The Chebyshev filters described in this handbook differ in two ways

from filters having the responses shown in figures 28(a) and 28(b): (1) All

low-pass filters in this handbook, including Chebyshevs, are designed to
have a gain of unity (0 dB) at dc, whether they have an even or odd number

of poles; (2) All cutoffs are specified as occuring at the -3 dB point; that is,

-3 dB from the maximum gain. The maximum gain for filters with an odd

number of poles occurs at de and at certain other frequencies; for filters

with an even number of poles, the maximum gain occurs at frequencies
other than dc.

Plots for 1 - dB-ripple Chebyshev low-pass filters are shown in figures

34 through 38; these filters are still true Chebyshevs, but the gains have

been adjusted to be unity (0 dB) at 0 Hz. It is pertinent to reiterate that

frequency-scaling or impedance-scaling will not affect the gains at de or
at the new cutoff.

SELECTION OF VALUES

Values for the components of low-pass filters that meet the requirements

of a particular application are readily obtained by modifying an existing
design with the frequency-scaling and impedance-scaling methods summarized
in table II (page 18).

Design performance characteristics are given in figures 29 through 43 for
lO00-Hz Butterworth, Chebyshev, and Bessel filters with 2, 3, 4, 6, and 8

poles. If the application under consideration can be satisfied by a filter

with a 1000-Hz cutoff, the required circuit is given, and no further design
is necessary.
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EXAMPLE 5 : Design a 3-pole, low-pass Butterworth filter that has a 3-dB

frequency of 1000 Hz.

SOLUTION: Since the required cutoff frequency is 1000 Hz, the design

in figure 30 can be used directly.

EXAMPLE 6: Design a 3-pole, low-pass Butterworth Filter that has a 3-dB
frequency of 1000 Hz. The filter is to be used to condition signals from a
circuit that has an output resistance of 15,000 ohms.

SOLUTION: Since the cutoff frequency is 1000 Hz, the design in figure
30 can be used directly; however, because the signal source acts as a 15,000-
ohm series resistance, it is necessary to use a buffer amplifier to provide the
low:impedance drive required by all the low-pass filters described in this
section of the handbook. If a buffer is not used, the 15,000-ohm source
resistance will sum with the 10,000-ohm input resistors of the filter and

modify the response to the extent that the filter is no longer a Butterworth
and therefore will not have the required 1000-Hz 3-dB frequency. A voltage
follower, such as the one shown in figure 10, would make a suitable input
buffer amplifier.

I--A--_A'A A A A d
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EXAMPLE 7: Design a 4-pole, low-pass Bessel filter with a 3-dB fre-
quency of 200 Hz.

SOLUTION: The circuit given in figure 41 is a 4-pole, low-pass Bessel
filter with a 3-dB frequency of 1000 Hz; accordingly, the circuit must be
frequency-scaled to 200 Hz and the proper multiplying factor for all resistor
values or all capacitor values is 1000/200 = 5 (see table II, page 18). All
resistors in the modified circuit of figure 41 should be 50,000 ohms, but in
practice 49.9-k_ one-percent resistors would be used; of course, the capac-
itor values remain unchanged.

In the new design, the series resistance seen by each amplifier has been
increased from 20 K_ to 100 k_; moreover, the output offset voltage
will be increased because of unavoidable amplifier bias-current, as explained
in chapter 2 under Input Offset and Drift. For example, a 741-type opera-
tional amplifier has a bias current that is typically 200 nA; therefore, each
amplifier would be offset by (200 hA)(100 k_) = 20 mV and, since two
amplifiers are involved, the total offset caused by the bias current of the
operational amplifier would be typically (2)(20 mV) = 40 mV. Some 741-
type amplifiers have voltage offsets as much as 1 mV; if the voltage and
current offsets happen to add, which would be a worst case, the total offset
could be as high as 42 mV. This usually is an acceptable offset; if not, the
741 amplifiers can be replaced with FET amplifiers that ordinarily have
much lower bias currents and comparable voltage offsets. Another possibility

would be to maintain the resistor values given in figure 41 and to increase
all capacitor values by a factor of 5 (table II, page 18).
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EXAMPLE 8: Design a 6-pole Chebyshev low-pass Filter with a cutoff of
10 Hz.

SOLUTION: Figure 37 shows the circuit for a 6-pole Chebyshevlow-pass

filter that has a cutoff of 1000 Hz. (Refer to the first part of this chapter for
a discussion of cutoff as it applies to Chebyshev Filters.)

The circuit in the figure can be frequency-scaled (table II, page 18), and

either the resistor values or the capacitor values can be scaled. Suppose it is

decided to increase the resistor values by the multiplying factor (I000 Hz)/
(10 Hz) = 100; all resistors for the new circuit will have the value of one

megohm. If 741-type operational amplifiers with 200-nA bias currents are

used, the offset per section will be (200nA)(2MI2) = 0.4 V. Since there are

three sections in the Filter, the total offset attributable to bias currents could

be as much as (3)(0.4 V) = 1.2 V. If the offset is!unacceptably high, it can
be reduced by using an FET or super-beta amplifier.

ff I_ ll !! !

When low-pass Chebyshev filters with greater or less ripple than the

1-dB value used thus far are required, it is necessary to adopt the capacitor

values given in table IV (for 0.25-dB and 3-dB of ripple). For example, to
convert the 1-dB ripple of the Filter shown in figure 34 to a Filter of 0.25-dB

ripple, C 1 and C2 should be changed to 0.02831 and 0.01081/.if, respective-
ly. The resistor values remain unchanged. J lrJ _ 'B B !
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TABLE IV.- Capacitance Values for 0.25-dB and 3-dB Ripple Chebyshev Low-Pass Filters with lO00-Hz Cutoffs

(R = 10,000 ohms; capacitance values in microfarads)

3.0 dB

Number C1 C2 C3 C4 C5 C6 C7 C 8
of Poles

2 0.02831 0.01081

3 0.1361 0_3212 0.001765

4 0.03535 0.02046 0.08536

6 0_4846 0.02986 0_6620

8 0_6259 0.03937 0.07382

2 0.04939 0.007253

3 0.6912 0.05777 0.0004032

4 0.07741 0.01670 0.1869

6 0.1116 0.02557 0.1524

8 0.1467 0.03433 0.1731
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CHAPTER 4

h_A-_A • A-L

High-Pass Filters

SELECTION OF FILTER TYPE AND NUMBER OF POLES

This chapter describes the steps involved in the design of Butterworth,

Chebyshev, and Bessel high-pass filters; the first step is to select the type of

filter that is most appropriate for the application in mind, and for this pur-

pose it is well to review the general characteristics of each type as presented

in the first part of chapter 2 and summarized in table I. For example, it has

been explained that the Butterworth is an excellent general purpose filter

with good attenuation characteristics and the maximum possible flatness

in the passband. In contrast, the Chebyshev has a steeper attenuation-slope

in the region of cutoff, but this is achieved at the expense of having ripple

in the passband. Bessel filters have poor attenuation-slope and poor flatness in
the pass region; also, they are not very useful as high-pass filters because their

linear phase properties are lost when low-frequency circuits are scaled to
higher frequencies.

Having selected one of the three basic types of filters, the next step is

to decide on the number of poles required. For reasons of economy and
simplicity, one usually selects a falter with the least number of poles that

will do the job. Usually, elimination of unwanted signals and reduction of

noise are the pivotal factors in the selection of the number of poles.

EXAMPLE 1: A unity-gain filter is required to attenuate all frequencies

up to 1000 Hz; maximum flatness in the passband is required and signals
of 60 Hz and less must be attenuated by at least 60 dB. How many poles
are required in the "filter?

SOLUTION: The idealized amplitude-response curves for Butterworth

(maximally-flat amplitude response) filters with 2, 3, 4, 6, and 8 poles are

shown in figure 44. Inspection of this figure reveals that a 3-pole filter will
provide the necessary 60-dB attenuation for frequencies of 60 Hz and below.

EXAMPLE 2: A unity-gain fdter is required to attenuate all frequencies

below 2000 Hz; maximum flatness in the passband is required and signals of

1000 Hz and below must be attenuated by at least 45 dB. How many poles
are required?

SOLUTION: Data given in figure 44 are for falters with 1000-Hz cut-offs,

but it is to be recalled that frequency-scaling does not affect the shape of

response curves. Consequently, the data in the figure can be applied to the
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HIGH-PASS FILTERS 91

ploblem of a 2000-Hz filter by multiplying all values on the frequency scale

by 2 (to provide a cutoff of 2000 Hz). Continuing, the number of poles

required to give 45 dB of attenuation at 1000 Hz is 8, because 500 Hz mul-
tiplied by 2 is 1000 Hz.

The attenuation provided by Chebyshev filters with different numbers

of poles is summarized in figures 50 through 54 and for Bessel ftlters in

figures 55 through 59. Determination of the extent to which a high-pass
filter will reduce noise involves the same considerations that were described

in chapter 3 for low-pass filters.

fdi-dl • ll-ll

! U I1 I! ]

EXAMPLE 3: A circuit has an equivalent noise-bandwidth of 100 kHz

and a thermal noise level of 200/aV/Hz 1/2. What will be the noise level, en,
if the bandwidth is reduced to 3 kHz?

SOLUTION: The noise level is reduced by the square root of the ratio
of the two bandwidths:

e
n

= [(3 kHz)/(i00 kHz)] 1/2 (200 uV)

= 34.6 #V

The gains of all the Butterworth and Bessel high-pass filters in figures

45 through 49 and figures 55 through 59 are 3 dB down at 1000 Hz; thus,

when frequency-scaled as described in table II, page 18, the new cutoff

frequency will also occur at a 3-dB point. With Chebyshev filters, the sit-

uation is slightly more complicated and has been discussed in chapter 3.

It should be recalled that all high-pass filters described in this handbook,

including Chebyshevs, are designed to have a gain of unity or 0 dB at high

frequencies within the passband and that all cutoffs are specified as being

at the -3 dB point (that is, -3 dB from the maximum gain occurring in the
passband indicated in the plots for Chebyshevs with a 1-dB ripple, figures

50 through 54).

II . =E U OH !

r v v' V !

SELECTION OF VALUES

Values for high-pass filters are readily obtained by modifying an exist-

ing design by frequency-scaling and impedance-scaling (table II, page 18)
to meet the requirements for a particular application.
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92 RC ACTIVE FILTER DESIGN

Designs for high-pass Butterworth, Chebyshev, and Bessel filters that

have 2, 3, 4, 6, and 8 poles and a 1000-Hz cutoff are given in figures 45

through 59. If an application can use a filter with a cutoff of 1000 Hz,

the circuit can be taken from the appropriate figure; no design changes

are necessary.

EXAMPLE 4: Design a 3-pole, high-pass Butterworth filter with a 3-dB

frequency of 1000 Hz.

SOLUTION: Since the cutoff frequency is 1000 Hz, the design in fig-

ure 46 can be used directly with no modification.

EXAMPLE 5: Design a 3-pole, high-pass Butterworth filter with a 3-dB

frequency of 1000 Hz. The filter is to be used to filter signals from a circuit

that includes a 0.02-/aF series-output capacitor.

SOLUTION: Since the cutoff frequency is 1000 Hz, the design of figure

46 can be used; however, because there is a 0.02-/aF capacitor in the output

of the signal source, a buffer amplifier is necessary to provide the low-imped-

ance drive required by all the high-pass filters described in this section of the

handbook. If a buffer is not used, the 0.02-/_F capacitor will modify the

filter RC network to the extent that it no longer is a Butterworth and thus

will not have a lO00-Hz, 3-dB cutoff frequency. A voltage follower such as

that in figure 10 would make a suitable buffer, but a resistor must be con-

nected from the + input to ground to provide a continuous dc path. The

resistor, R, and the 0.02-/aF source capacitor C, will of themselves form a

high-pass filter. The effect of this filter on the overall circuit performance

can be rendered negligible by selecting a value for R of such magnitude

that at 1000 Hz the RC network will have negligible attenuation. Assume

that 0.1-dB attenuation is negligible; using equation (4) in chapter 2, it is

found that -0.1 dB represents a gain of 0.98855; that is, with a 1-volt input

to the 0.02-_F capacitor, the voltage across the resistor should be _aO.98855

V at 1000 Hz. By vectorial summation of voltages it can be determined

that the voltage across the capacitor will be 0.15087 V. Also, the reactarlce

of a 0.02-/aF capacitor at 1000 Hz is 7.9577 kI2. Finally, because the same

current flows through both C and R,

R - (Voltage across R) (Reactance of C)
(Voltage across C)

(0.9885) (7.9577)
= = 52.14 k_2

(0.15087)
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HIGH-PASS FILTERS 93

Accordingly, a resistor with value greater than 52.14 k_, say 56 or 68 k_2,
would be suitable.

i_A• • • d

EXAMPLE 6: Design a 4-pole, high-pass Bessel filter with a 3-dB frequen-
cy of 2000 Hz.

SOLUTION: The circuit shown in figure 57 is for a 4-pole, high-pass

Bessel filter that has a 3-dB frequency of 1000 Hz. The solution is, there-
fore, to frequency-scale this circuit to 2000 Hz. From table II, all resistor

values or all capacitor values can be multiplied by 1000/2000 or 0.5. It is

probably most convenient to change all capacitors from 0.01 to 0.005/aF.

EXAMPLE 7: Design a 6-pole Chebyshev high-pass falter with a cutoff
at 1 Hz.

SOLUTION: Figure 53 shows the circuit for a 6-pole Chebyshev low-

pass filter with cutoff at 1000 Hz (refer to the first part of chapters 3 and 4

for a discussion of cutoff as it applies to Chebyshev filters). This circuit can

be frequency-scaled (table II, page 18) and either the resistors or the capaci-

tors can be changed; for example, increase all the capacitors to 10/_F by

using a multiplying factor of 1000. The circuit is now frequency-scaled to

1 Hz, but 10/aF is an inconveniently large value; since 1/aF would be better,

all capacitors should be further multiplied by 0.1 and all resistors by 10, as

described in table II (page 18). The filter is still frequency-scaled to 1 Hz, but
has been impedance-scaled to more convenient values. Note that the resistor

on the last operational amplifier in figure 53 is 247.7 kI2, but this has been
impedance-scaled to 2,477 kI2. Since this resistor serves as the bias resistor

for the operational" amplifier, an FET or super-beta type of amplifier should

be used to minimize offsets resulting from input bias currents.

When high-pass Chebyshev filters with greater or less ripple than the 1-dB

value used thus far are required, it is necessary to adopt the capacitor values

given in table V (for filters with 0.25-dB and 3-dB of ripple). For example,
to convert the 1-dB ripple of the fdter shown in figure 50 to a filter of

0.25-dB ripple, R 1 and R 2 should be changed to 8.946 k_ and 23.44 kI2,
respectively. The capacitor values remain unchanged.
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TABLE V.- Resistance Values for 0.25-dB and 3-dB Ripple Chebyshev High-Pass Filters with lO00-Hz Cutoffs

(C = 0.01 microfarad; resistance values in thousands of ohms)

Ripple
Number
of Poles R1 R2 R3 R4 R5 R6 R7

0.25 dB 2 8.946 23.44

3 1.861 7.885 143.5

4 7.164 12.38 2.968

6 5.227 8.484 3.826

8 4.047 6.434 3.431

76.35

37.04 1.400 170.7

26.26 2.293 78.82 0.8051

dB 2

3

4

6

8

5.129 34.92

0.3665 4.385 628.2

3.272 15.17 1.355

2.271 9.906 1.662

1.726 7.378 1.464

168.7

79.51 0.6084 397.5

55.53 0.9780 182.2 0.3434

R 8

304.0

718.5
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CHAPTER 5

Bandpass Filters

TYPES OF BANDPASS FILTERS

Four types of bandpass filters are discussed in this chapter:

1. Relatively wideband ftlters made by connecting in series the low-pass
and high-pass filters described in chapters 3 and 4.

2. Relatively narrowband filters built from one or more operational

amplifier circuits; commercially available "pole-pairs" also may be used.

3. Filters designed by the method oflow-pass-to-bandpass transformation.
4. Digital bandpass filters.

DESIGN BY COMBINING LOW-PASS AND HIGH-PASS FILTERS

If the design specifies lower and upper cutoff frequencies that are not too
close, the circuits given in chapters 3 and 4 may be used as the basis for

design of a bandpass filter; figure 60 shows how the combination of a low-

pass filter with the response indicated in figure 60(a) and a high-pass filter

with the response shown in figure 60(b) yields the response curve of figure
60(c). A bandpass circuit is shown in figure 60(d).

The procedure for combining circuits is straightforward, but it must be

realized that the high-pass filter determines the lower cutoff and the low-pass

falter determines the higher cutoff, as is indicated in figure 60. A specific
example will clarify the design procedure.

EXAMPLE 1: Design a bandpass filter with a lower cutoff of 100 Hz and a

higher cutoff of 1000 Hz by cascading high-pass and low-pass filters. Attenua-

tion-slopes should be 18 dB per octave, and the high-pass and low-pass filters
are to be of the Butterworth type.

SOLUTION: Designs for 18-dB-per-octave Butterworth low-pass and

high-pass filters are given in figures 30 and 46, respectively. Figure 30 gives
the design for a cutoff of 1000 Hz; this circuit does not need to be modified.

On the other hand, it will be necessary to frequency-scale the circuit in

figure 46 from 1000 to 100 Hz (table II). Suppose it is elected to increase all

capacitors by the multiplying factor of 10, thereby establishing that all

capacitors in the high-pass section will be 0.1 /IF; the final circuit diagram

is given in figure 60(d). In theory, it does not matter whether the low-pass

or the high-pass section is placed first, but in practice the high-pass section
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FIGURE 60. - Bandpass design by combining low-pass and high-pass filters.
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BANDPASS FILTERS 113

is usually placed last, for in this position output offset voltages can only be

caused by flow of bias currents through the 78.63-k_ resistor. In contrast,

if the low-pass filter were placed last, output offset would arise from cur-

rent flow in the combination of the 78.63-k[2 plus the three 10-k_2 resistors

in the low-pass section.

It can be seen by inspection of the low-pass and high-pass filter responses

presented in chapters 3 and 4 that as the lower and upper cutoffs approach

each other, the bandpass region has more and more insertion loss. Although

attenuation losses can always be made up in an amplifier section, the filter

response will have an undesirable shape. (A method for designing bandpass

filters with a desired shape-Butterworth, Bessel, or Chebyshev-is given in
the third section of this chapter.) How much attenuation and departure from

an ideal filter shape can be tolerated depends on the particular application.

It is possible to estimate attenuation and departure by studying the curves
given for the standard filters in chapter 3 and 4 or, in the case of Butter-

worth filters, by calculations similar to the following:

For a low-pass, unity-gain Butterworth filter of n poles and with a 3-dB

cutoff at fc' the magnitude of the gain at any frequency, f, is given by

IALI = (48)

+ (f__) 2n

For a high-pass, unity-gain Butterworth filter of n poles and a 3-dB cutoff

at fc, the magnitude of the gain at any frequency fis

IAHI + ( f)2n
(49)

For a bandpass Butterworth filter, the gain at any frequency can be ob-

tained by multiplying the gain of the low-pass section by the gain of the high-

pass section. Equations (48) and (49) are therefore useful in checking the

pass region arid cutoff gains of bandpass Butterworth filters assembled by
connecting low-pass and high-pass filters in series.

EXAMPLE 2: A Butterworth bandpass filter is to be built by cascading a

low-pass filter that has a 1000-Hz cutoff and a high-pass filter that has a 100-
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114 RC ACTIVE FILTER DESIGN

Hz cutoff; both filters are 3-pole and have unity gain. Find the bandpass

filter gain at the center frequency as well as at 100 and 1000 Hz.

SOLUTION: Since both high-pass' and low-pass filters have the same

number of poles (three), geometric symmetry (as will be explained later)
can be used to fred the center frequency fo. Looking ahead in this section,

and invoking equation (52),

fo = [(100) (1000)] 1/2 = 316.23 Hz

but at 316.23 Hz, equations (48) and (49) provide

1ALl = 0.9995 or -.0.00434 dB

JAn[ = 0.9995 or -0.00434 dB.

Hence, at 316.23 Hz, the overall circuit gain is

IAI = IALI IAHI = 0.9990 or -0.00868 dB

Now, at 100 Hz, equations (48) and (49) show that

[AL_ = 0.9999995 or -0.00000434 dB

IAHI = 0.7071 or -3.010 dB,

whereupon, at 100 Hz the overall circuit gain is found to be

IA[ = [ALl [An[ = 0.7071 or -3.010 dB.

Proceeding as before, at 1000 Hz, equations (48) and (49) give the follow-

ing,

IAL[ = 0.7071 or -3.010 dB

[An[ -- 0.9999995 or -0.00000434 dB

for which it is found that at 1000 Hz the overall circuit gain is

[AI = [ALl IAH[ = 0.7071 or-3.010 dB.

Summarizing, the results indicate that the filter has 3-dB points at 100 and •

1000 Hz and essentiaUy no loss at mid-frequency.
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NARROWBAND FILTERS

' Narrowband, peaked-response filters with the general type of response

shown in figure 61 can be constructed in a variety of ways, but they usually

are identified by supplying numerical values for the following characteristics:

fo = center frequency

Q = selectivity = fo/(BW) (50)

! l_ E E l

BW = 3-dB bandwidth = (f2-fl) (51)

A o = gain at frequency fo

,02--,,,_ <'_ [!... t I 1
The last expression, in which the square of the center frequency is equated

to the product of the two 3-dB cutoff frequencies, is a particular case of the

geometric mean symmetry associated with the filters under discussion, and

because of this symmetry, the product of any two frequencies at which the

same attenuation occurs is the square of the center frequency.

EXAMPLE 3: A bandpass _ter has a response of the type indicated in
figure 61; the center frequency is 1000 Hz and the bandwidth is 100 Hz.

What is the circuit Q and what are the two 3-dB cutoff frequencies?

SOLUTION: Given that the center frequency fo is 1000 Hz and the
bandwidth (equation (51)) is 100 Hz, it is necessary to identify the two

frequencies f2 and fl as dictated by equation (52). By solving the quad-

ratic expression and ignoring negative frequencies, there are obtained

fl = 951.25 Hz

I"2 = 1051.25 Hz

As a check, note that f2 - fl = 100 Hz and flf 2 = 106 = f2. Continuing,
equation (50) provides the selectivity,

1000
Q = - 10

100
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FIGURE 61.- Narrowband bandpass-filter response.
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i=i-i i-i-d
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FIGURE 62.- Single operational amplifier bandpass filter.
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118 RC ACTIVE FILTER DESIGN

Single Operational Amplifier Circuits

The circuit diagram of a very useful filter that requires only one opera-

tional amplifier is given in figure 62; the response of the filter is shown in fig-
ure 61.

The circuit of figure 62 is very useful for filters that have Q-values (selec-

tivities) of up to 30 at frequencies as high as 10 kHz with a center frequency

gain of unity. The exact values for Q and gain depend on the degree of match

of the components and on the operational amplifier used. The circuit can be

operated at higher frequencies with lower Q's, but significantly higher Q's

are not usually practical, even at lower frequencies.

The design equations for the circuit given in figure 62 are as follows:

Let fo = center frequency, A o = gain at center frequency, and B = band-
width; then

R 3
A _ --m

O

2R 1

(53)

1

B - n"3"r,_ (54)

R 1

R2 = _ (55)
R1R3(27rfoC)2 1

Io
Q = _- (56)

The negative sign in equation (53) indicates that the input and output are

180 ° out of phase at the center frequency.

An important feature of the circuit can be deduced from equation (55),

because R 2 appears in this equation, but not in equations (53) and (54); it is

possible to use R 2 to tune the circuit without affecting center-frequency
gain or the bandwidth. Since a major problem with all RC active f'tlter cir-
cuits is the selection of components to achieve proper tuning, the ability to

"final-tune" with a single resistor is a great convenience. Note that changing

R2 varies fo without changing B. From equation (56) it follows that varying

R2 _will affect the circuit Q; however, since R2 is usually used to fine-tune
the frequency, the effect is small.
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BANDPASS FILTERS 119

EXAMPLE 4: Find values for the circuit in figure 62 that will give a Q

of 30 with a gain of-1 at a center frequency of 1000 Hz.

SOLUTION: Equation (56) indicates that B must be 33.33 Hz; it is

possible to choose C to be any convenient value (impedance-scale as per

table II should the resistor values be impractical). Suppose C is chosen to

be 0.1 /_F; then, equation (54) provides R 3 = 95.49 kfZ, equation (53)

shows R 1 = 47.75 k[2, and equation (55) indicates R 2 = 26.54 [2. Actually,
the design is complete at this stage because the capacitors and the three

resistors are all reasonable in value;however, R 1 and R3 are close to stand-
ard one-percent resistor values of 49.9 k_2 and 100 kfZ, and it would be

more convenient to use these values than to trim or select resistors to fit

the computed values. However, if the standard values are used, the filter

will be detuned. Fortunately, the standard values can be used if the-filter

is retuned by calculating a new value for R2. The bandwidth and Q will be
changed, but the effect will be small. An additional bonus in tuning with

R 2 is that C does not have to be selected to within one percent of 0.1 /aF;
a pair of 0.1-/aF nominal value capacitors matched to one percent are used

and the filter is retuned with R 2. Thus with R 1 = 49.9 k[2, R3 = 100 kfZ,
and C = 0.1/_F,

equation (53) gives A°
equation (54) gives B

equation (56) gives Q

equation (55) gives R 2

=-1

= 31.83 Hz

= 31.41

= 25.34

Using R 1 = 49.9 kfZ and R 3 = 100 k[2, the bandwidth is 31.83 Hz instead
of the required 30 Hz, a difference that usually is inconsequential. To sim-

plify tuning, R 2 cguld be made from a fixed resistor of 15 ohms in series
with a 20-ohm potentiometer used as a variable resistor.

Multiple Operational Amplifier Circuits

The circuit of figure 62 is not generally suitable for applications that
require Q-values of 50 or more; for Q-values of 50 to 500, a different circuit

must be used. Figure 63 shows the circuit diagram of one version of what
has been called an analog computer filter, a state-variable filter, a dual inte-

grator ffflter, a biquad, and a ring-of-three. The circuit has two advantages over
the single operational amplifier circuit shown in figure 62; first, it is capable

of providing stable Q-values of about 500, and second, its performance is
much more insensitive to component values.

The design equations for the circuit in figure 63 are as follows: Let fo =
center frequency, A° = gain at center frequency, and B = bandwidth.
Then,

k A A • A-i
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rA--dh_A_A-A-A •d

ff U H _ H m l

Input

C

R _ I_-_SS output

!1̧t

• I i . ,El . i i a

Bandpass output

[ -_ - F____ _' %2"_

FIGURE 63. - State-variable bandpass filter.
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ib_dkA-A--A-d

R 2 r
A _ o

o R1 R
(57)

1
fo = 2_'CR (58)

fO r

Q =-'B-= R (59)

Note that R 1 appears only in the gain equation (57); accordingly, the

gain can be adjusted independently of other parameters by varying R 1.
Also, the Q of the circuit can be adjusted with a single resistor, r, without

detuning the _ter, because r does not appear in the center frequency expres-

sion, equation (58); however, if r is changed to vary Q, then R 1 must be

changed in proportion to keep A o constant, as indicated in equation (57).

EXAMPLE 5: Find values for the circuit of figure 63 that will give a Q of

100 with a gain of +1 at 1000 Hz. The input resistance should be one meg-
ohm.

SOLUTION: As usual, it is possible to choose any value for C as a start-

ing point; later, if the calculations result in impractical values for other

components, more appropriate values usually can be obtained by impedance-

scaling (see table II, page 18). Let C = 0.1/aF; then

equation (58) furnishes R = 1.592 k_2,

equation (59) provides r = 159.2 k_2, and

equation (57) shows that R1/R 2 = 100.

From elementary operational amplifier theory, the input resistance of the

_ter is equal to the value of R 1 ; because R 1 is one megohm, equation (57)
shows that R 2 = 10,000 ohms.

A variation of the state-variable circuit (Kerwin and Shaffer, reference
15) is shown in figure 64. For this circuit,

1
fo = 2_R---C" (vary R) (60)

I U U I I
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'-i--l-i.'_i-i- i i-d

\

II lit U I_ I • m

R1

R1

R3

R2

Input Bandpass output

C

!'

• i • I ,E m I •

r F _ v v V 1,: _._ _ _

FIGURE 64. - State-variable bandpass filter with independent tuning and

selectivity controls (ref. 15).
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R 3R 5
A o = _ (vary R3) (61)

R2R 4

R4 + R5 (vary RS_Q - --j (62)
2R 4 R 2

I _ ! I I

The advantage of the circuit shown in figure 64 is the ease with whichfo ,
A o, and Q can be varied independently of each other; varying R changes

fo' but not A o or Q and varying R3 changes Ao, but not fo or Q. Ganging

R 5 and R 2 and varying the ratio R5/R 2 changes Q but not fo or A o.
State-variable type circuits are available commercially from a number

of companies and are often identified as universal active filters because

they have three separate outputs, low-pass, high-pass, and bandpass. The

circuit of figure 63 needs to be modified to provide all three outputs be-
cause the output of the input summer is not a true high-pass section even

though bandpass and low-pass outputs are available from the integrator

sections as shown. Additional discussion about the modification to give a
true high-pass section will be found in chapter 6, where the high-pass and

low-pass sections of such a filter are summed to give a notch.

!

• _ .ll_i • ! I I

Low-Pass-to-Bandpass Transformation

So far, two ba._ic approaches to the design of bandpass filters have been

discussed. The first involved the combination of low-pass and high-pass
filters to give a response such as that in figure 65(a); the second involved

several methods of designing circuits to give the response in figure 65(b).
Neither of these approaches is suitable for the design of filters that have

the response shown in figure 65(c). The response is too narrowband to

be made from combinations of practical low-pass and high-pass circuits,

but it has a pass region that cannot be obtained with a simple peaking cir-
cuit.

The design of filters that have the type of response shown in figure 65(c)
is more involved than the circuits discussed so far, but the procedure is still
straightforward, though more lengthy. In essence, the method consists of

connecting in series a number of filters having the type of response shown
in figure 65(b) and determining the response each individual filter must have.

For example, three filters having the responses shown in figure 65(d) could

be cascaded to produce the response shown in figure 65(c). (This technique,

r v _ V ]
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65(a) Wideband.

Frequency

65(b) Narrowband peaked.

]m I_ u ! l

Frequency

65(c) Narrowband with fiat

passband.

.E

Frequency

65(d) The responses of three filters

which could be cascaded to provide

the response shown in (c).

FIGURE 65. - Types of bandpass filter response.
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BANDPASS FILTERS 125

as well as a related, but different technique, is described in detail in reference

3.) Note that the design of an individual filter section with a response of the

type shown in figure 65(b) involves finding its Q, center-frequency fo, and

center-frequency gain Ao; these quantities specify the section completely.
The easiest way to find the design parameters of the sections to be cas-

caded is to use a low-pass-to-bandpass transformation; a summary of the

steps involved is indicated in figure 66. Figure 66(a) shows a desired band-

pass response; knowing the design requirements of this bandpass response, it

is possible to find an equivalent, or prototype low-pass response, as shown

in figure 66(b). The response is equivalent because when a low-pass-to-

bandpass transformation is performed on the equations for the low-pass

filter, the result is equations for the desired bandpass filter. The equations

permit determination of the Q, fo' and A o of each of the n required sections
indicated in figure 66(c) and 66(d).

The design procedure is best illustrated by means of numerical examples.

An overview of the procedure, given below, is followed by two examples.

1. Define the desired bandpass filter requirements in terms of shape

factors (shape factors and how they are found are described in

design examples in this chapter).

2. Find the low-pass filter that has the same shape factor as the band-

pass filter being designed.

3. Perform a low-pass-to-bandpass transformation to find Q, fo' and

A o for the individual sections of which the final bandpass filter
design is comprised.

4. Design the individual bandpass sections.

i--i-i-i-i-ll

E !_ !! • l

! 1
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EXAMPLE 6: Find the shape factor, S, for the bandpass Chebyshev filter

shown in figure 67, and find its equivalent low-pass prototype.

SOLUTION: Shape factor is the ratio of two bandwidths at two specified

attenuations. In this instance, the two attenuations are 50 dB and 3 dB, and

the corresponding bandwidths are 1350 Hz and 450 Hz, respectively. There-

fore S is 1350/450 or 3.

Since the bandpass filter is a Chebyshev with a 1-dB ripple, the low-pass
prototype must also be a Chebyshev with 1-dB ripple. Referring to figure

36, which shows the response of a 4-pole, low-pass Chebyshev filter, it is

evident that attenuations of 50 dB and 3 dB occur at approximately 3000 Hz

and 1000 Hz, respectively. The shape factor for this low-pass fdter is there-
fore 3000/1000 = 3 also, and the filter is suitable for transformation to the

bandpass version of figure 67.

Two important points need be stressed: First, the two specified attenua-

tions must be the same for the low-pass prototype as for the bandpass filter,

although the actual attenuations are arbitrary; for example, 10 dB and 40 dB

y v v I
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66(a) Required bandpass response. 66(b) Low-pass equivalent.
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66(c) Bandpass filter sections showing design parameters of each section.
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FIGURE 66. - Low-pass-to-bandpass transformation.
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128 RC ACTIVE FILTER DESIGN

could have been used in place of 3 dB and 50 dB. Second, note that shape

factor is the ratio of frequencies and, therefore, is dimensionless; accordingly,

one could use a low-pass prototype that has a cutoff at 1 radian/sec instead

of 1000 Hz (or any frequency). A 4-pole, low-pass Chebyshev filter will

always have the same shape factor regardless of its cutoff. The important

fact to be garnered from the comparison of bandpass and low-pass shape
factors is that only a 4-pole, low-pass prototype can be transformed into

the bandpass filter with the response given in figure 67.

_--A--A:AA dh A il
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EXAMPLE 7: Find the shape factor S for the bandpass Butterworth

filter shown in figure 68 and find the equivalent low-pass prototype.

S()LUTION: At 50 dB and at 3 dB, the bandwidths are 1360 Hz and

200 Hz, respectively. Accordingly, the shape factor S is 1360/200 or 6.8.

Now, since the bandpass filter is a Butterworth, the prototype must also

be a Butterworth. Referring to figure 30 (the response of a 3-pole, Butter-
worth low-pass filter), it is found that attenuations of 50 dB and 3 dB occur

at 7000 Hz and 1000 Hz, respectively. The shape factor for this low-pass

filter is 7 and may be considered suitably close to 6.8 for most practical

purposes. The 3-pole prototype is, therefore, suitable for transformation

to the bandpass filter of figure 68.

EXAMPLE 8: How many sections of the type shown in figure 66(c),

each with its own Q, fo' and A o, would be required to build the Chebyshev
and Butterworth bandpass filters described in examples 6 and 7?

SOLUTION: The number of sections is equal to the number of poles in

the low-pass prototype. From shape factor considerations, the Chebyshev

low-pass prototype was found to have 4 poles in example 6; therefore, 4

sections are required. Since the Butterworth low-pass prototype was found
to require 3 poles in example 7, 3 sections are required to be included in the
bandpass filter.

• _ i :11811 "HI i •

EXAMPLE 9: Design a bandpass, 1-dB ripple Chebyshev filter that has

the response shown in figure 67.

SOLUTION: From examples 6 and 8 in this chapter it has been found

that the response shown in figure 67 requires a low-pass, 1-dB ripple Cheby-

shev prototype with 4 poles. When the prototype has an even number of

poles, as in this case, the resulting 4 bandpass sections can be grouped in

pairs having equal Q's. Therefore, the final design will have 4 sections, all

1 | !! If II E I[ l I1 11 E 11
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with different center frequencies and two sections will have one value for

Q while the others will have another value for Q.
First find the two values for Q with the help of constants listed in table

VI(a). Data in this table show that there are 4 constants for a 4-pole 1-dB-

ripple Chebyshev low-pass prototype. These constants are: a 1 = 0.25198;

b 1 = 0.63983; a2 = 0.88970; and b 2 = 0.26503. The values of a 1 and b 1
are used to calculate the Q of the first two sections, and the values of a2

and b 2 are used to calculate the Q of the last two sections. Following are
the formulas used to calculate Q:

Let Qo = Q of bandpass filter being designed.

Center frequency of filter being designed
Then Qo - 3-dB bandwidth of filter being designed

(63)

Calculate X = (__)2
(64)

-i--i--i_-i-i-i-lJ

a

Calculate Y = X +- (65)
b2 • U . N .1_ u mm •

f t 1/2
Y + x/y2 _ X_Calculate O

2
(66)

The center frequency is found from the two 3-dB frequencies using equa-

tion (52):

f2o = flf2 = (800)(1250) = 106

fo = 1000 Hz

1000
From equation (63), Qo = 45---'_ = 2.22222

From equation (64), X = 48.2508, using b 1

From equation (65), Y = 48.8664, using a 1 and b 1

From equation (66), Q = 6.97268 for the first two sections.
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TABLE VI. - Low-Pass-to-Bandpass Transformation Constants*

(a) Low-pass prototype with 2, 4, 6, or 8 poles

Filter type Poles a 1 b I a 2 b 2 a 3 b 3 a 4 b4

Butterworth 2 1.0000 1.4142
4 1.0000 1.8478 1.0000 0.76537
6 1.0000 1.9319 1.0000 1.4142 1.0000 0.51764
8 1.0000 1.9616 1.0000 1.6629 1.0000 1.1111 1.0000 0.39018

Chebyshev 2 0.82713 1.1242
0.25-dB 4 0.35013 0.90030 0.89445 0.37292
tipple 6 0.17506 0.65680 0.55946 0.48081 0.94387 0.17599

8 0.10280 0.50860 0.35573 0.43117 0.71341 0.28810 0.96634 0.10117

Chebyshev 2 0.74363 0.90154
1-dB tipple 4 0.25198 0.63983 0.88970 0.26503

6 0.11906 0.45350 0.53246 0.33198 0.94587 0.12151
8 0.068447 0.34742 0.33206 0.29453 0.70486 0.19680 0.96848 0.069107

Chebyshev 2 0.70712 0.64452
3-dBtipp_ 4 0.19592 0.41128 0.90282 0.17032

6 0.088793 0.28533 0.52175 0.20888 0.95470 0.076454
8 0.050290 0.21695 0.32087 0.18392 0.70352 0.12289 0.97410 0.043155

(b) Low-pass prototype with 3 poles

Filter type a b

Butterworth 1.0000 1.0000
Chebyshev, 0.25-dB tipple 0.85278 0.61236
Chebyshev, l-dB tipple 0.82938 0.45135
Chebyshev, 3-dB ripple 0.83873 0.29854

*Constants for Bessel filters are not given because these Filters lose their linear phase property in the low-pass-to-bandpass transformation process and
therefore are not generally useful as bandpass filters.

Z
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All answers are expressed in 6 significant figures because equation (68)
[to be presented later] involves subtraction of large numbers that are relative-

ly equal. Even though in practice it is sufficient to know Q to only 2 or 3

significant figures, it is necessary to retain the value for O of 6.97268 for use

in equation (68). A value of Q accurate to 3 significant figures is eventually
sufficient, so Q = 6.97 is applied to the circuit of figure 69 in the first two
_ter sections.

By a similar set of calculations, equations (64), (65), and (66) give Q =

17.1361 when Qo is again set equal to 2.22222, but a2 = 0.88970 and b 2 =
0.26503. The abridged value of Q = 17.1 is used in figure 69 for the blocks
representing the last two sections.

Having found the Q requirements of all 4 sections, it is now possible to
proceed to the calculations of the center frequency of each section. The

folloWing formulas are used, With the center frequency fo = 1000 and the

Q of the bandpass filter being designed Qo = 2.22222. Obtaining b as before
from table VI(a):

i--A--A_i--A A ilia

| l ff U u m !
#

!!
Calculate Z - bQ

Qo

Yol So[z2

r_
Io2 Iol

(67)

(68)

(69)

• R H H i i •

From equation (67), Z = 2.0076 since b 1 = 0.63983

From equation (68), fol = 1091.1 Hz

From equation (69), fo2 = 916.5 Hz

These center frequencies may be inserted into the first two sections of fig-

ure 69. By a similar process, but using b 2 = 0.26503 and withfo = 1000 Hz
and Qo = 2.22222, equations (67), (68), and (69) give fo3 = 1232.1 Hz and
fo4 = 811.6 Hz. These frequencies may be inserted into the last two sections
of figure 69.

Thus far, there have been found all the Q's and center frequencies of the

four individual bandpass sections that will give the bandpass Chebyshev re-

sponse of figure 67 when connected in series. The final step is to set the gain
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FIGURE 69.- Sections for 1-dB ripple Chebyshev bandpass filter.
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of each section so that the overall gain of the final filter is unity or 0 dB at

the center frequency of 1000 Hz.

To f'md the required gain for each section, first assume that the gain of
each of the 4 sections at its own center frequency is unity; then find the

gain of each section at the center frequency of the final filter, which is
1000 Hz. Multiplying the four 1000-Hz gains together will give the over-

all gain of the final filter at its center frequency of 1000 Hz, provided the

gains of the individual sections are all unity at their own center frequencies.

The gains of the individual sections can be adjusted to bring the overall

gain at 1000 Hz to unity as desired. The following will clarify the procedure.
So far there has been computed for the center frequencies and Q's of the

individual sections:

fol = 1091.1 Hz, Q1 = 6.97

fo2 = 916.5 Hz, Q2 = 6.97

fo3 = 1232.1 Hz, Q 3 = 17.1

fo4 = 811"6Hz'Q4 = 17.1

Considering the first section, for a center frequency gain of 1, the gain at any

other frequency f can be computed by the following equation, provided

the circuit Q of the section is known:

folf

Q1

A1 =Nj ) (70)(fox-1_f2)2 /foil
• t_Q 1

For this section, f.o 1 = 1091.1 Hz and Q = 6.97; using equation (70) it is
found that the gain of the section at f = 1000 Hz is 0.635. The gains of all

4 sections at 1000 Hz can be calculated by substituting the appropriate

fo and Q into equation (70) with f always 1000 Hz. Accordingly,

1st section gain at 1000 Hz = 0.635

2nd section gain at 1000 Hz = 0.635

3rd section gain at 1000 Hz = 0.137

4th section gain at 1000 Hz = 0.137

Overall gain at 1000 Hz = (0.635)(0.635)(0.137)(0.137) = 0.00757

In order to raise the overall gain to 1, it is necessary to multiply by a

factor of 1/(0.00757) or 132.1. Multiplying the gain at one frequency multi-

I--A--A:A-A A A-d
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plies the gain by the same amount at all frequencies; accordingly each section

should be designed to have a gain of 3.39 at its own center frequency because
(3.39)(3.39)(3.39)(3.39) = 132.1. The block diagram design can now be com-

pleted by inserting the gain values into figure 69.

It remains to design the individual filter sections now that their Q'fo' and
A o values are known. Design procedures have already been given for single
operational amplifier realizations and for state-variable realizations in the

third section of chapter 5. In general, a state-variable realization is to be pre-

ferred because the resulting filter has higher stability. Also, state-variable

circuits in the form of universal active filters or pole pairs are commercially

available and can be set to any fo' Q, and A o within specifications by adding
a few external components. When setting up a filter it is important to be

certain that each section has its correct fo' Q' and A o before it is connected
to the others.

Butterworth and Chebyshev bandpass filters may be designed b'y the

method of low-pass-to-bandpass transformation using the constants listed
in table VI. Filters with 2-, 4-, 6-, and 8-pole, low-pass prototypes are de-

signed using the constants listed in table VI(a). The method and formulas

are the same as for the filter in example 9. Constants for Bessel filters are

not given because in the low-pass-to-bandpass transformation process the
filters lose their linear phase property and thus are not generally useful.

The procedure can also be used for 3-pole filters but a simple modifica-

tion is required, as is illustrated by the following example.

EXAMPLE 10: Design a bandpass Butterworth filter that provides the
response shown in figure 68.

SOLUTION: The solution to example 7 in this chapter reveals that

the response shown in figure 68 requires a low-pass Butterworth proto-

type with three poles. With a 3-pole prototype, the three bandpass sections

are grouped into a pair of sections of equal Q's and one odd section of a

different Q. Accordingly, the final design will include three bandpass sec-
tions, each with different center frequencies and the Q's indicated above.

First find the value of Q for the two sections that have equal Q's; the

method was described in example 9 and it initially requires finding the

proper constants in table VI. There are two: a = 1, b = 1; both a and b

are used to calculate the Q of the two sections having equal Q's, but only
b is used for calculation of the Q of the odd section.

The center frequency from the two 3-dB frequencies is found by use
of equation (52):

f2 = flf2 = (905)(1105) = 106

fo = 1000
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Now, equations (63), (64), (65), and (66) are used to obtain the Q's of

the equal-Q sections:

1000
From equation (63),Qo = 200 - 5

From equation (64), X = 100.000

From equation (65), Y = 101.000

From equation (66), Q = 10.0375.

i--A--A_ A-I iA 'AI
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Note that Q is expressed as a value of six significant figures because

equation (68) (used later in this example) involves the subtraction of large,

nearly equal, numbers. Even though in practice it is necessary to know Q

to only two or three significant figures, it is important to retain the value

10.0375 for use in equation (68). Eventually, however, the value of Q wiU

need to be accurate only to about three significant figures;in fact, a Q of

10 can be inserted into the first two falter sections of figure 70(a).

Computation of the Q of the odd section is straightforward; if Qo is the

Q of the filter being designed (Qo = 5 in this case), then the Q of the odd
section is found from

QO

Q = T (71)

[ ! t ! I

where b is the constant obtained from table VI. In this instance, b = 1 and
it follows that

5
Q ='T= 5

This value for Q is inserted into the block for the third section in figure

70(a).-

Now that the Q requirements of all three sections have been found, the

next step is the calculation of the center frequency of each section. The
same formulas as were used in example 9 in this chapter are used for the

two sections that have the same Q, namely equations (67), (68), and (69).

Let fo and Qo be the center frequency and Q of the bandpass filter
being designed; for this example:

fo = 1000 Qo = 5
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Obtaining b = 1 as before from table VI(b) and using Qo = 5 and Q =
10.0375, there can be obtained:

From equation (67), Z = 2.00750

From equation (68), fol = 1090.43 Hz

From equation (69), fo2 = 917.066 Hz

These center frequencies may be inserted into the first two sections in fig-

ure 70(a).

For the center frequency of the odd section, note that fo is the center
frequency of the filter being designed (1000 Hz in this case), and the cen-

ter frequency f of the odd section is given by equation (72):

f = fo (72)

Clearly, in this case f = 1000 Hz, and this value may be inserted into the

third section in figure 70(a).

Up to the present, there have been calculated the Q's and center fre-

quencies of all three individual bandpass sections that will give the band-

pass Butterworth response shown in figure 68 when connected in series. The

last step is to find the gain of each section so that the overall gain of the

final combination of filters is unity or 0 dB at the center frequency of 1000
Hz.

The procedure used to find the gain of each section is the same as the

one used for the Chebyshev case in example 9; first, assume that the gain

of each of the three sections at its own center frequency is unity and then

find the gain of each section at the center frequency of the final filter (1000

Hz). Provided the gains of the ifidividual sections are all unity at their own

center frequencies, multiply the three gains of each filter at 1000 Hz to

give the overall gain of the final filter at its center frequency of 1000 Hz.

As noted before, the gains of the individual sections then can be adjusted

to bring the overall gain at 1000 Hz to unity. Continuing with the design

example will clarify the procedure.
Thus far in the example, the center frequencies and Q's of the individual

sections are known:

fol = 1090.43 Hz, Q1 = 10.0375

fo2 = 917.066 Hz, Q2 = 10.0375

fo3 = 1000 Hz, O 3 = 5
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For a center frequency gain of 1, the gain at any other frequency, f, can
be obtained from equation (70) when the circuit Q of the section is known.

In fact, equation (70) provides the following:

1st section gain at 1000 Hz = 0.4993

2nd section gain at 1000 Hz = 0.4993

3rd section gain at 1000 Hz = 1

Overall gain at 1000 Hz = (0.4993)(0.4993)(1) = 0.2493

In order to raise the overall gain to 1, it is necessary to multiply by a

factor of 1/(0.2493) or 4.011, for example, the gain of each section can

be increased by 1.5888 because (1.5888)(1.5888)(1.5888) = 4.011. More-

over, since multiplying the gain of a filter at one frequency multiplies the

gain at all frequencies by the same amount, each section should be designed

to have a gain of 1.5888 at its center frequency. Now the block diagram

design can be completed by inserting the gain values into figure 70(a). How-
ever, Filters with unequal gains could be used because the same overall re-

sponse can be achieved without having equal gains. For example, if the gain
multiplying factor is rounded off from 4.011 to 4, gains of 2, 2, and 1 for

the three Filter sections could also be used; the resulting Fdter block diagram
for this case is shown in figure 70(b).

The responses of the three Filter sections for the case where the gains

are all equal to 1.5888 (+4 dB) are shown in figure 70(c) along with the

final Filter that has a center frequency gain of 1 (0 dB).

I A-A-A A-I
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DIGITAL BANDPASS FILTERS

The digital bandpass filters to be discussed in this section are digital

in the sense that they use digital integrated circuits and digital switching

techniques. However, the signals processed by the filters are analog, not

digital; consequently, the word digital as used here refers to the filtering
technique and not to the signals being filtered. Digital filters are also called
commutating filters.

Before discussing specific circuits, it is of interest to note some of the

main advantages of the type of digital bandpass filter covered in this hand-

book, but it is also necessary to have a clear understanding of one of the

disadvantages of high-Q nondigital circuits. The nature of this disadvantage
is best illustrated by the following example.

EXAMPLE 11: A bandpass filter with a response of the type shown in

figure 65(b) has a Q of 250, a center frequency of 1000 Hz, and a center-

frequency gain of I. If the frequency of the input signal drifts lower than

1000 Hz, the output will drop, but even when the input remains at 1000

F v V t
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Hz, the output may drop if the center frequency of the filter changes because

of component drift. How much will the output be reduced if the frequency is

reduced by 0.1 percent, 0.2 percent, and one percent?

SOLUTION: The percentage frequency changes are converted to frequen-

cy changes:

0.1% drop in 1000 Hz means the signal is reduced to 999 Hz

0.2% drop in 1000 Hz means the signal is reduced to 998 Hz

1.0% drop in 1000 Hz means the signal is reduced to 990 Hz

The gain of a bandpass fdter designed for one frequency but used at any

other frequency is given by equation (70); for the filter under consideration

at this time, fol = 1000 Hz and Q1 = 250. Solving for frequencies off = 999,
998, and 990 Hz, there are obtained

at 999 Hz, gain = 0.894 or -1 dB

at 998 Hz, gain = 0.707 or -3 dB

at 990 Hz, gain = 0.195 or -14 dB

i--dh--A_ A--i -dh-dh-d

| l _ U I I ]
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The values indicate that the output is very susceptible to changes either in

the frequency of the signal source or in the center frequency of the filter.

It takes only a one percent change in frequency to produce a change of-14

dB in filter gain. The reason for this sensitivity is the high Q of the filter

(250); reducing Q will help, but the effectiveness of the filtering also is
reduced. One solution to this problem is a digital filter.

A digital filter can be used advantageously in many instances because

it can be made to track an input frequency so that the detuning effects

revealed in example 11 will not "occur. Unfortunately, a digital filter requires

a clock-frequency input, but there are many instances where a clock input is
available; for example, in phase-sensitive detection systems that use lock-in

amplifiers, a reference signal of the same frequency as the signal is always

available and usually a multiple of this signal also can be made available. As
will be made evident further on, a clock running at a multiple of the signal

frequency is usually necessary with digital filters. The clock can be crystal-
controlled for absolute accuracy, nontracking circuits; that is, circuits that

must operate without a reference signal.
The type of digital filter that will be discussed in the following paragraphs

is shown in outline form in figure 71. The filter consists of N low-pass sec-

tions made from a single resistor and N capacitors; only one falter section is

in the circuit at any instant, because the sections are alternately switched

into the circuit in sequential fashion by rotation of switch S (ordinarily a
solid-state switch). The switching rate is N times the center frequency of the
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bandpass fdter being designed and the bandwidth of the filter is 2/N times
the bandwidth of the low-pass section. The following terms are used in the

design of a filter such as shown in figure 71:

fs = center frequency of bandpass filter being designed

N = number of low-pass sections = number of capacitors

fc = Nfs = clock frequency required to drive switch S

B = bandwidth of bandpass filter = 1/(TrNRC)

EXAMPLE 12: A digital bandpass filter is to be used to process a 1000-Hz

signal; the low-pass sections of the triter consist of a 100-kf2 resistor and

eight 0.1 - /aF capacitors. Find the clock frequency required to drive the

rotating switch; find the Q and bandwidth of the bandpass filter.

SOLUTION: The statement of the problem establishes that fs = 1000 Hz

and N = 8. Accordingly,

the clock frequency fc = Nfs = 8000 Hz, and

the bandwidth B -
1 1

_NRC (,r)(8)(105)(10-7)
= 3.98 Hz.

Rounding off the bandwidth B to a value of 4, the selectivity of the filter is:

1000
Q = B 4

= 250

-dh--A--dh_A-A dh A- d
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The output of the circuit shown in figure 71 has the stepped appearance

indicated in figure 72, although the waveform can be filtered further to

produce the smoothed sine-wave output that is also shown in figure 72.

Before considering an example of the design of a practical digital filter,

it is necessary to be aware that a f'flter of the 8-section type shown in figure

71 yields a multiple bandpass response of the type shown in figure 73, and in

certain applications this form of response may create problems. Note that the

circuit has its maximum response at dc and that the response at 1000 Hz is

slightly less; in fact, there are bandpass responses at all harmonics of 1000 Hz

up to 8000 Hz, the latter being the clock frequency at which there is zero

response. In general, the first harmonic frequency at which no response

occurs is always the clock frequency, but other zero-responses occur at

multiples of the clock frequency. In the case of an 8-section digital filter,

zero responses occur at 8000 Hz, 16,000 Hz, 24,000 Hz, and so on.

A peculiarity of digital f'dters is that the output frequency is not neces-

sarily the same as the input frequency; this is, in contrast to the analog-
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i_l-dl-ll--li-ll

| Im U I ]

Without bandpass filtering.

72(a)

!

72(b)

With bandpass filtering.

FIGURE 72. - Output of digital filter.
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| U W IW ! ! 1

0 1 2 3 4 5

Frequency, kHz
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FIGURE 73. - Multiple bandpass response of an 8-section digital filter.
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type t'dters that attenuate a signal but do not change its frequency. As an

illustration, the following list shows the output frequencies obtained for

various sine-wave inputs to the 8-section digital filter.

Input Fundamental Input Fundamental

frequency frequency of frequency frequency of

Hz output, Hz Hz output, Hz

1000 1000 8,000 0

2000 2000 9_00 1000

4000 4000 10,000 2000

6000 2000 12,000 4000

7OOO 1000

Data in the list show, for example, that if the _ter of figure 71 is sup-

plied with 1000-Hz, 7000-Hz, or 9000-Hz inputs, the output will be a wave

form with a 1000-Hz fundamental frequency in each case. This observa-

tion is very significant for it shows that not only must an output filter be

used to remove the steps shown in figure 72, but an input filter also must

be used to remove the harmonics in the input signal that can generate un-

wanted and confusing output signals. If the input filter is omitted, unwanted

frequencies will appear in the output. If the output filter is omitted, the out-

put is a stepped wave form, not a sine wave.

The complete digital filter shown in block-diagram form in figure 74 is
based on the design given in example 12; it has a Q of 250 and a center fre-

quency of 1000 Hz. The input and output filters also have center frequen-

cies of 1000 Hz, but have lower Q's of 30, so that slight frequency changes

in the input signaldo not produce large changes in output amplitude. Recall

that the high-Q digital section can track input frequency changes, but the
low-Q analog sections cannot.

It is reasonable to ask why a digital filter is used if it requires two addi-

tional analog filters for proper performance. The answer is that the filter

in figure 74 is a practical, easily realizable device that provides a high Q with

low-Q analog filters. For example, it is possible to obtain extremely high-Q

values with the circuit in figure 74 and the circuit can be made to perform

well at much higher frequencies than a corresponding device made exclusively

of analog filters.

A practical realization of the block diagram of figure 74 is shown in figure

75. The CD4011 is used as an 8000-Hz clock to drive the rotating switch.

In phase-sensitive, lock-in amplifier applications, the clock signal would come

from the generator providing the phase detector reference. In these instances,

there would be an 8000-Hz clock to drive the digital filter and the clock fre-

quency would be counted down to 1000 Hz to provide the phase detector

i--Iidt-Ii dld
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i_lh-A-.-Ai

| _ I! !

+10V

___CA-CD4011

47 k_ _2, 13

+10V

Switch driver T

I 14

1 RCA-CD4024

12 11 9 2,7

100 k_ i

+10V

8-kHz Clock T

t " 1° 9 '6 I"°tatmg-10 o_ 7 RCA-CD4051 switch

13 14 15 12 1 5 2 4 3,6,8

,npu__. i ,.0.,,_ l_lliil=

oo_o,.__{ TTTTTTTT _uffer
Input analog filter

[I_1 !"t

• !tli _ RE ill I

,ok,_._<_,'_tput

Output analog filter

FIGURE 75. - Practical digital circuit with fo = 1000 Hz and Q = 250,
with low-Q, analog-input and analog-output filters.
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reference. The CD4024 decodes the clock signal to provide appropriate

drive signals for the solid-state, rotating-switch CD4051. The frequency

response of this circuit is shown in figure 76; note the suppression of har-
monics of 1000-Hz
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FIGURE 76. - Response of circuit in figure 75.
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Band-Reject Filters

CHAPTER 6

i-i-li-lill-i

TYPES OF BAND-REJECT FILTERS

Band-reject filters can be designed by several techniques, of which three
will be discussed here:

1. Combinations of the low-Q, low-pass and high-pass filters discussed
in chapters 3 and 4. The low-pass and high-pass sections should be
summed; that is, connected in parallel, not in series. This is in con-
trast to bandpass filters that are assembled from low-pass and high-
pass sections connected in series.

2. Combinations that use available 3-terminal, null- or notch-networks
with active feedback to one of the three terminals.

3. Combinations of high-Q, low-pass and high-pass filter outputs from
the state-variable active filters that are based on the dual integrator
circuit discussed in the third section "Multiple Operational Amplifier
Circuits" of chapter 5.

Very sharp notch filters with extremely narrow reject regions must be used
with caution. For example, such fdters are very frequently used for the elimi-
nation of 60-Hz interference and sometimes the filters are required to pass de
to perhaps 58 Hz and to pass from 62 Hz to some high frequency while re-
jecting 60 Hz. In most instances, however, it is far better to get rid of 60-Hz
interference by some means other than a notch filter. In fact, before resorting
to notch filters, all attempts should be made to ensure correct shielding and

proper grounding along with the use of opto-isolators, differential amplifiers
with high common.mode rejection, and other related techniques.

Notch filters are extremely sensitive to component mismatch; for example,
significant reduction of 60 Hz with a high-Q notch having a theoretical depth
of, say, 50 dB, cannot be realized with components matched to within one

percent - at least a 0.1-percent match is necessary; moreover, high stability
components must be used to maintain the notch depth.

II _ lff !
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COMBINING THE OUTPUTS OF LOW-Q, LOW-PASS
AND HIGH-PASS FILTERS

The design of band-reject filters comprised of combinations of low-Q,

low-pass and high-pass filters is straightforward; however, the low-pass and
high-pass sections must be connected in parallel paths to sum their outputs,
in contrast to the series connection required for bandpass filters.
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152 RC ACTIVE FILTER DESIGN

EXAMPLE 1: Figure 77(a) shows a 1-kHz low-pass filter and a 10-kHz

high-pass filter. What would be the output if the two fdters were connected in
series? What would be the output if the inputs of the two filters were to be

connected together and their outputs fed to a summer?

SOLUTION: The series connection of the two filters is shown in block

diagram form in figure 77(b); clearly, only signals having frequencies between

de and about 1 kHz will pass through the first filter. However, the second

filter rejects all signals below about 10 kHz; consequently, the output is zero

for any input signal frequency.
The other connection described above is shown in figure 77(c). Input A

of the summing amplifier receives all signals from dc to 1 kHz. Input B of

the summing amplifier receives all signals above 10 kHz. Since the summing

aml_lifier does not discriminate against any frequency, its output contains

signals from both dc to 1 kHz and 10 kHz and above. Its output response is
therefore the same as that of figure 77(a).

EXAMPLE 2: Design a circuit that will provide the response shown in

figure 77(a). Butterworth response is required in the pass regions.

SOLUTION: Since both low-pass and high-pass sections require 18-dB/

octave attenuation-slopes, both should be 3-pole filters. The design of the

1-kHz low-pass fdter can be obtained directly from figure 30. The 10-kHz

section can be obtained from figure 46 by frequency-scaling (see table II,

page 18). As a result of the scaling procedure, all capacitors are changed in

figure 46 from 0.01 to 0.001 /.tF. The outputs of the filters are summed;

the final circuit is shown in figure 77(d).

\
\

.H _ U B I

TWlN-T WITH FEEDBACK

It is impractical to achieve a response such as that indicated by the solid

line in figure 78(a) with the filter combinations described in the preceding

section. One way to obtain this type of response is to apply feedback to any

one of a number of three terminal networks, as indicated in figure 78(b).

Of the many networks available, the twin-T is perhaps the best known; this

is an arrangement of resistors and capacitors that produces the type of

response shown by the dashed line in figure 78(a). In fact, if the response

represented by the dashed line is adequate, a twin-T or other null network

combined with a voltage follower used as a buffer may be employed without
the need to feedback to the third terminal. In a circuit of the type shown

in figure 78(b), the feedback from the amplifier output to C would be dis-
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0

c

18 d B/Octave

1000 10,000

Frequency, Hz

77(a) Low-pass and high-pass responses.

1000-Hz ] I 10,000-Hz /

Input O-_ Low-pass _ High-pass I-_--OOutput

J filter I [ filter /

77(b) Series connection.

Input o----

lO00+Hz

Low-pass
filter

Input

lO,O00-Hz
High-pass
filter

77(c) Parallel connection.

4.488 k_Z

o.ool,F_o.ool,F0.00,,F_I 7,,.>--

77(d) Practical circuit.

A

O Output

10 k_

10 k_

Output

\
| _ U m

r v v Y I

FIGURE 77. - Band rejection by summing low-Q, low-pass and
high-pass sections.
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%PL_I
_1 Nu,, IX I _._ut

/ neti°rk I _"_"_ t -

C

78(b) Basic circuit.
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78(c) Practical circuit.

• 111 In ,li + U n •

[ _ y v v v 1

FIGURE 78. - Null network with feedback.
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connected and terminal C would be grounded. In circuits connected this

way, component-matching requirements are not as severe as when feed-
back is used.

Figure 78(c) shows a circuit diagram for a filter designed to provide

a response with a sharp notch such as represented by the solid-line response

in figure 78(a). The values are for a 1-kHz notch, but the notch can be
shifted to any frequency by frequency-scaling and impedance-scaling (table

II, page 18). By using components selected to 0.1 percent or better, a null
of-50 dB was achieved in an actual circuit.

 mm-dl-A--d

N! N N II

COMBINING THE LOW-PASS AND HIGH-PASS OUTPUTS

OF STATE-VARIABLE F! LTERS

State-variable f'dters can be designed to have high-pass, bandpass, and low-

pass outputs. If the low-pass output is derived from the high-pass by pure

dual integration as shown in figure 79, the low-pass and high-pass outputs
will be exactly 180 ° out of phase, because each integrator introduces a

phase-lag of 90°; if the amplitudes of the low-pass and high-pass outputs

are equal at one particular frequency, summing these outputs will result in
zero voltage output (equal voltages of opposite polarity). However, even

when the outputs are not equal in amplitude, they can be summed in a

manner that will produce a null.

The state-variable circuit used to produce a notch in the response of a

filter is slightly different from the one first introduced in figure 63. Refer-

ring to this figure, note the presence of resistor r that prevents the first

integrator from having 90 ° of phase shift at all frequencies, thereby com-

plicating the design equations. The circuit, as modified in figure 79(a),

omits the resistor r of figure 63 that was used to set the circuit Q so that

the two integrators can provide the required phase-shift of exactly 180 °.

Also, for control of Q, feedback is applied from the output of the first

integrator, which is the bandpass output, to the input summer and an out-

put summer is included to sum the high-pass and low-pass outputs so that

a null is available at one frequency. A circuit of this type has a confusingly

large number of different values for gain, since gain depends on the frequency

as well as the particular output under consideration. Gains are listed below

and on figures 79(c), 79(d) and 79(e) along with other important circuit

parameters.

ro

Ao
AoL

AoH

A L

= notch frequency = resonant frequency of the low-pass, high-

pass and bandpass outputs

= gain to bandpass output atf o

= gain to low-pass output at fo

= gain to high-pass output at fo
= gain to low.pass output at low frequencies
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,nputo---_ put

F--4-,-'ummerI L.-/ pass

Output = High-pass

+ low-pass

79(a) Basic circuit.

i C C '1oo___o_ _o_
fnpu_ R1 I _-_ l ..". 1 t.,.. I

+ I........ I _-T-_--v-v-. _v_"-I - X I 50 k_ 50 k_
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79(b) Practical circuit.

+10 AoL fo

0 0
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_ -44
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-70
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Frequency, Hz

79(c) Low-pass
response.
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o,JB
-70 I
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Frequency, Hz

79(d) High-pass
response.
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• .=g m _ ! 131
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L III
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79(e) Notch
response.

FIGURE 79. - State-variable notch filter.
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A H = gain to high-pass output at high frequencies
A N = notch output-gain in the bandpass region

Qo = Q of low-pass, high-pass and bandpass outputs
Rp = the resistance of all the resistors on the noninverting input of the

input summing amplifier in parallel;that is,

1+1 1
Rp = R"_" _ + _105 (73)

The design equations for this circuit are as follows:

_II--Ii-A-A-I

I _ N •

fo - 2_0CR (74) [ :_ "" K !

106

Qo = (vri-0) (111 (Rp)
(75)

105

A o - R1 (76)

AoL = x_A ° (77)

AoH = Ao/Vr'i_ (78)

A L = AoL/Q (79)

¥ _ V '

A H = AoH/Q (80)

A N = A L (81)

EXAMPLE 4: Design a circuit based on figure 79(b) that has a notch at

1 kHz, a circuit Q of 50, and a gain to the bandpass output of unity; C =

1000 pF. Find AoL, AoH, A L, A H, and AN.
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SOLUTION:

From equation (74), R = 50.33 k_

From equation (76), R 1 = 100 k_

From equation (75), Rp = 575.0 I2

From equation (73), R 2 = 581.7 I2

From equation (77), AoL = _ = +10 dB

From equation (78), AoH = 1/_/]'-0 = -10 dB

From equation (79), A L = V_-6/50 = -24 dB

From equation (80), A H = 1/(,v/_) (50) = --44 dB

From equation (81), A N = -24 dB

Refer to figures 79(c), 79(d) and 79(e) for the meaning of the gains cal-
culated above. Theoretically, the notch should be infinitely deep, but in a

practical circuit that inevitably had component mismatches, a depth of
only -70 dB was achieved; the 3-dB width of the notch was 19 Hz as shown

in figure 79(e). The dynamic range of this circuit is an important factor in

its use; with a 1-V RMS input, the low-pass output is 10 dB higher atf o for
a circuit Q of 50, or 8.9 V peak-to-peak. With higher Q's, the dynamic range
is correspondingly larger.

Since the high-pass output gain is 0.1 times the low-pass gain, the output

summer uses 5-k_ and 50-k_ summing resistors to equalize the gains and
produce the notch; the feedback resistor in the output summer gives an

overall gain of -24 dB outside the notch region. The final circuit is shown

in figure 79(b) and the response in figure 79(e).
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Circuits of the type shown in figure 79(b) are available commercially

in the form of universal active filters. Resistors (R)are added externally

to tune the filter, and extra capacitors can be added in parallel with the

two capacitors (C) if necessary, Often R 2 is an internal resistor of a value
that gives a Q of 1, but it can be paralleled with other resistors to raise the

Q. The output summer must be provided by the user, although an undedi-

cated operational amplifier is sometimes provided on the integrated-circuit
unit for this purpose.

| ! ! I I I I g: il I g II x [

\
\

t _l T It I T 1

i ....1 1- l-I I I 1 I"I II I I I II-I I I]



BAND-REJECT FILTERS 159

Notch filters can also be built using digital techniques. In this approach,

there is first designed a digital bandpass filter of the type shown in figures

74 and 75 that has a peak response at the notch frequency and then the out-

put of the digital filter and the signal input are made to be equal in ampli-
tude, but 180 ° out of phase. Summing of the two signals provides a cancella-

tion, thereby producing a notch. If the 180 ° of phase-shift and the equality

of amplitude can be maintained with a high degree of accuracy, a very sharp,

deep notch can be obtained. The notch depth provided by this type of filter

can be very stable and much less dependent on component drift than straight

analog falters. A filter produced by this technique is described in reference 20.
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APPENDIX

Topics in Filter Design

INTRODUCTION

A knowledge of the topics covered and referenced in this appendix is not

necessary for the understanding and application of the design procedures for

any of the fdters discussed in previous chapters;however, the design proce-

dures and data given previously can be applied more effectively when the
user has some idea of the derivation of the various formulas and of how f'flters

are basically designed. The discussion below is intended to serve as an intro-
duction to the material in the references.

| U U •

[*! 'I
TRANSFER FUNCTIONS

The design of filters involves a detailed consideration of input/output

relationships because a filter may be required to pass or attenuate input

signals so that the output amplitude-versus-frequency curve has some desired

shape. The mathematical expression relating to the output to the input is
called the transfer function.

It is possible to study quite generalized expressions for transfer functions,

but in order to understand certain essential points, attention will be focused

on three specific transfer functions: those for low-pass, high-pass, and band-
pass falters of the second order. The term "second order" refers to the fact

that the transfer equations involve terms no higher than p2. Second-order

transfer functions describe 2-pole f'flters; third-order functions involve p3

and describe 3-pole falters, and so on. For steady-state, sinusoidal, non-

transient signals, p is an operator which can be expressed as p = jco = j21rf.

Second-order transfer functions are a useful starting point in the study of

f'flters because they are foundations upon which more complex filters can

be built. For example, all the low-pass and high-pass filters discussed in
chapters 3 and 4 are based on second-order transfer functions. The band-

pass falters in chapter 5, including those using low-pass-to-bandpass trans-

formations, also are based on 2-pole designs.
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162 RC ACTIVE FILTER DESIGN

Typical second-order transfer functions for low-pass, high-pass, and

bandpass filters are:

Low-pass: Output _ H (A-l)
Input p2 + bp + a

Bandpass: Output _ Hp (A-2)
Input p2 + bp + a

High-pass: Output _ Hp 2 (A-3)

Input p2 + bp + a

l%te that all three transfer functions have the same denominator and that

the numerators have increasing powers of p. That the equations do represent

low-pass, high-pass, and bandpass filters can be seen by noting that p is pro-

portional to frequency and by studying the behavior of the equations at such
points as co = 0 and co = _,. For example, putting co = 0 into equation (A-I)

gives output/input = H/a, while co = _, gives output/input = 0, which indi-

cates that equation (A-l) describes a filter that passes dc with a gain of H/a

and attenuates infinite and high frequencies; in other words, it describes a

low-pass falter.

The numerator and the denominator of equation (A-2) can be divided

by p and then p can be replaced with jco to give

I I U I_ U • ]
J

II ,El . IE :! I

Output _ H _ H
Input $1

jco + b +5 jco + b - _----
Jco co

(A-4)

At co = 0 and co = _o, equation (A-4) reduces to zero; when co = a/co or

co2 = a, the output/input is equal to H/b, which indicates that equation

(A-4) describes a filter that attenuates low and high frequencies and passes

midband frequencies; in other words, equation (A-4) describes a bandpass
filter.

The numerator and denominator of equation (A-3) can be divided by
p2 and p can be replaced with jw to give

F _ T v v ¥

Output _ H

Input 1 +.b ..
Jco 6o2

(A-5)
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Equation (A-5) reduces to 0 at 60 = 0 and to H at co = oo, indicating that

the equation describes a filter that passes high frequencies and attenuates

low frequencies; in other words, the equation describes a high-pass falter.

Although equation (A-l) describes a low-pass filter, there are many dif-

ferent types of low-pass fdters; for example, chapter 3 contains design in-

formation for Butterworth, Chebyshev, and Bessel low-pass filters. The

type of filter, that is, the shape of its response curve, is determined by the

constants a and b in equation (A-I); the constant H is a multiplier that

affects the falter gain. Constants a and b in equations (A-2) and (A-3) also

determine the type of filter and H is again a multiplying factor affecting

the gain.

There are available tables listing constants such as a and b for various

types of filters. (H is a scaling factor chosen by the designer to give a specific

gain.) Typically, a and b are given as coefficients in polynomial functions

for various types of filters. Butterworth polynomials for low-pass filters

up to 4 poles are as follows:

FII-II-tI?II-i

I N II i

Number
Unfactored form Factored form

of Poles

1

p+l

p3 +2p2 +2p+l (p+l)(p a +p+l)

1 1

p4 + 2.61p3 + 3.41p2 + 2.61p + 1 (p2 + 0.765p + 1) (pa + 1.85p + 1)

• .lml . !

For example, in equation (A-l), H = 1, b = x/2, and a = 1 would give a

Butterworth response. The factored form is given for the 3-pole and 4-pole

cases to illustrate that higher order transfer functions can be reduced to

products of second order functions or less. This means, for example, that

a 4-pole filter can be made from two second order filters, as can be seen

by comparing figures 29 and 31.

The following simple example illustrates how a filter may be designed

with the aid of transfer function polynomials.

il 1I 1[ Z
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EXAMPLE A-l: Design a two-pole, low-pass Butterworth filter with

a passband gain of unity and a cutoff of 1 kHz. Use the circuit of figure
A-1.

SOLUTION: First obtain an expression for the output/input transfer

function, or e3/e 1 . Note that e3 appears in two places in figure A-1 because
of voltage-follower action. Two equations can be obtained by summing

currents; the currents are obtained by dividing the voltage across the parti-

cular component by its impedance. From i 1 = i2 + i3, it follows that

e I - e2 e2 - e3 e2 - e 3
---- + (A-6)

R 1 1/pC 1 R2

From i3 = i4, it is evident that

e 2 - e 3 e3

R2 1/pC 2

Equations (A-6) and (A-7) can be solved by eliminating e2 to give

(A-7)

II--II--It_llliiil-i

| ! IB U U •

e3 = l/R1R2C1C 2

(R 1 + R2)
el p2 + p +

R1R2C 1 R1R2C1C 2

(A-8)

For equation (A-8) to represent.a Butterworth filter, it must have the same

form as the fundamental Butterworth equation; as was indicated earlier,
the form is

Output _ 1

Input p2 + X/'2p + 1
(A-9)

By equating coefficients between equations (A-8) and (A-9), values for'R1,
R 2, C 1, and C2 can be derived to make the circuit in figure A-1 a Butter-

worth filter. Examination of the coefficients reveals that any two compo-

nents out of the group consisting of R 1, R2, C1, and C2 can be chosen
arbitrarily, and then the equations can be solved for the other two. Suppose

the selected coefficients are: R 1 = R 2 = 1_2. Then, by equating coefficients

there are obtained C 1 = x/2F and C2 = 1/x/2F. These values provide the

Butterworth filter, but it is necessary to determine its cutoff frequency and

I , IR Ig_ , ! i111

r _ y v _ V '_

I i ! I ![ I I I I
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VA-A-AfAd

I U _ • 1

R1

el

=1

2q

e2

R2 e3

i3 C2 1
o e3

For co = 1 radian/sec, R1 -- R2 = 1_2

C1 =x/2F

C2 = 1/x/2 F

• . ,="_ ._ I i l

For f = 1000 Hz, R1 = R2 = 10 k_2

C1 -- 0.0225/IF

C2 -- 0.01125/IF

¥

FIGURE A-1. - Butterworth 2-pole low-pass filter.
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to complete the design for a cutoff of 1 kHz. An expression for the gain
magnitude can be obtained by substituting p = jco in equation (A-9):

m_A--A_A--A-A-A-i

Output _ Gain = G = 1 (A-10)
Input (1 - co2) + jco X/_

Multiplying the numerator and denominator of equation (A-10) by (1 - 602)

-jco %/2 gives

| I _ U N I !
e_

1 E_,__,_++_1 _,.,,,G - ( _o4 + 1)

Taking the square root of the sum of the squares of the real and imaginary

quantities inside the square brackets in equation (A-11) gives

IGI (c°4 + 1)1/2- (A-12)
(60 4 + 1)

Thus the magnitude of the gain is

+ I .I + •

1
[GI - (A-13)

(60 4 + 1)112

At 6o = 0, equation (A-13) shows the gain [GI is equal to 1, and the gain at

dc is unity. In order to fred the 3-dB frequency, the gain IGI is set equal
to -3 dB, or 0.7071 (which is 1/_/2). Then, equation (A-13) indicates 60 = 1

radian/sec. Accordingly, the 3-dB frequency of the Butterworth filter repre-

sented by equation (A-9) is ¢_ = 1 radian]sec or, f = 1/2rr Hz. Because the

required filter is to have a cutoff at 1 kHz, it is necessary to frequency-scale

the circuit at hand (see table II in chapter 2, page 18). The appropriate

multiplying factor is 1/2000rr; thus C 1 and C2 are converted to values that
provide a 1-kHz cutoff. In summary, the circuit values are

F _ Y v v V t

_' _j_ "
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R1 = R2 = 1_2

1
C 2 = F

(V_) (2000_)

However, these values are impractical and so it is necessary to obtain more

realizable values. Suppose it is decided to multiply all resistor values by

10,000 and to divide all capacitor values by 10,000 (see table II, chapter
2). The new values are"

R 1 = R 2 = 10k_2

C 1 = 0.0225 of

C2 = 0.01125 of

The resulting circuit in figure A-1 is the same as that in figure 29 (chapter 3)
and the design is complete.

VA--A-ATA-i

| U _ !

[!+! _!

Polynomial expressions are used to define other types of filters, such as

Bessel and Chebyshev. The design of these filters uses the same principles

as were used in example A-l, although more sophisticated analysis techniques
are useful for multiple-section filters.

Q AND SECOND-ORDER BANDPASS TRANSFER FUNCTIONS

The second-order bandpass transfer function has been given in equation
(A-2) as

Hp
T(p) = (A-14)

p2 + bp + a

The term H is an arbitrary multiplying factor, and equation (A-14) may
be written in the form:

T(p) = Hp (A.-15)

p2 + ._ + _2O

r v v ¥

ll If X ]i
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so that

RC ACTIVE FILTER DESIGN

¢0° = _ = resonant frequency, radians per second

Q = _ _ resonant frequency
b bandwidth

BW = b = bandwidth, radians per second

HQ=
A = -- gain at the center frequency

O CO °

(A-16)

(A-17)

(g-18)

(A-19)

It can be shown that equation (A-15) represents a curve of the shape

shown in figure A-2, when T(p) isplotted against frequency; the maximum

value occurs at coo and is HQ/¢o o, and therefore peaking is increased when
Q is increased. The coefficient b in equation (A-14) is the bandwidth at the

3-dB points and, by comparing coefficients in equations (A-14) and (A-15)

it is evident that b = 6oo/Q.

EXAMPLE A-2: The triter in figure 62 (chapter 5) and example 4 (chap-

ter 5) was designed using design equations (53) through (56) (chapter 5) to

have fo = 1 kHz, Q = 30, and A o = -I. Write a transfer function for this
filter in the form of equation (A-14) without using equation (A-15).

SOLUTION: The filter is reproduced in figure A-3. By current-summing

techniques similar to those used in example A-1 the transfer function is
found to be

1

e 2 RlC • p

--= 2 1 /_+_ (A-20)
e I p2 + R---_-" p + --

+ R3C2

Putting in values for the various resistors and capacitors, equation (A-20)
reduces to

e2 = -209.4p (A-21)
e I p2 + 209.@ + (39.48)(106)

| !1 U !_ II • '

ill . ml

_ V

1 +-1£+12 -__ "L" +_" _"
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_ll--lilt ili

| _ U I

c

High Q

Medium Q

Low O

_t!

Frequency

it

FIGURE A-2. - Effect of varying Q.
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-ii--lt--ti'-i-litlll-i

!I ! U U I! • 1
:I

0.1 p.F - C R3 95.49 k_

R1 C _

el _----------_ " II -
47.75 ka 0.1/,tF

26.54,.Q,..._R2

oe 2

I. I , in jei il , . II. _ I

Q = 30

fo = 1000 Hz

Ao = -1

B = 33.3 Hz

r _ V v v V !..

FIGURE A-3. - Bandpass filter with fo = 1000 Hz, Q = 30, and A ° = -I.
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so that in equation (A-14), H = -209.4, a = (39.48)(106) and b = 209.4

AS a check:

Equation (A-16) gives

and

Equation (A-17) gives

and

Equation (A-19) gives

w ° = (6.283) (103) radians per second

fo -- _o/2rt = 1 kHz

Q = 30

H = coefficient of p in numerator = -209.4

A =-1
O

POLES AND ZEROS

It has been shown that the performance of filters can be described by

quadratic expressions such as equations (A-I), (A-2), and (A-3). If appro-

priate numbers are inserted into equation (A-l), the transfer function for a

Butterworth low-pass filter is obtained:

i-i--lllt lli

[_ I 1"

T(p) = 1 (A-22)

p2 + x/_p + I

The expression can be written in factored form:

1 (A-23) [ V v ¥
T(p) = (p _ pl)( p _ P2 ) _ _

1 j
where Pl = --_+"_ (A-24)

1 j

and P2- _ V_ (A-2S)

The terms Pl and P2 are the roots of the denominator of equation (A-22) and
are called the poles. When roots of the numerator exist, they are called the

I_ {17:1.17'I/ :-",

11 l E li l[ l
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zeros. Equation (A-22) has two poles and is therefore the transfer function

of a two-pole filter. The terms Pl and P2 can be plotted on a pole-zero
diagram as in figure A-4. Poles are represented by crosses; zeros, when they
exist, are represented by small circles.

Pole-zero plots are useful for two main reasons. First, the location of the

poles and zeros on the pole-zero diagram completely characterizes a circuit,

except for a scale factor. Secondly, having described a desired circuit in

terms of its poles and zeros, it is possible to design or synthesize a circuit
with poles and zeros at the specified points; in other words, a desired circuit

can be realized from pole-zero considerations.

A great deal of information is to be gleaned from pole-zero plots; see,
for example, references 2, 5, and 9.

SENSITIVITY

When applied to active filters, sensitivity is a measure of the change in

some particular performance characteristic caused by a change in the value

of one or more components in the filter. For example, if a one-percent

change in a resistor value produced a 10-percent change in the Q of a filter,

the sensitivity of Q to that resistor would probably be considered high.

On the other hand, if a one-percent change in the resistor R produced a
0.1 percent change in Q, the sensitivity would probably be considered low.

One way of expressing sensitivity in mathematical form would be

[ I I! I

! |

S Q _ dQ/Q
R dR/R (A-26)

Strictly speaking, equation (A-26) applies only to infinitesimally small

changes, but, in practice, it can be applied to changes of the order of 10

percent. For a one-percent change in R and a 10-percent change in Q, sQR
would be (10/100)/(1[100) = 10. For a one-percent change in R and a 0.1-
percent change in Q it would be (0.1 / 100)/(1 / 100) = 0.1

The expression given in equation (A-26) is an example of classical sensitiv'-

ity. Also in common use is root sensitivity in which the effect considered

is the change in position of the poles and zeros of the filter function. Sensitiv-

ity may be def'med in a number of other ways, and a variety of other symbols

may be used, but it is usual to use a superscript to denote the performance

characteristic and a subscript to denote the element producing the change as
was done in equation (A-26).

The subject of sensitivity applied to active filters is covered extensively
in references 1,2, 8, 9,13, and 14.
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Vll-II-llTA-I

Imaginary axis

--+j

-- +j/_/2

I
+1

-- -j/_2

-- -j

Real axis

[ _ K I

F v v ¥ '

!1

FIGURE A-4. - Pole-zero diagram for 2-pole, low-pass Butterworth filter.
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